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Abstract— Robot modelling is an essential part to properly
understand how a robotic system moves and how to control
it. The kinematic model of a robot is usually obtained by
using Denavit-Hartenberg convention, which relies on a set of
parameters to describe the end-effector pose in a Cartesian
space. These parameters are assigned based on geometrical
considerations of the robotic structure, however, the assigned
values may be inaccurate. The purpose of robot kinematic
calibration is therefore to find optimal parameters which
improve the accuracy of the robot model. In this work we
present Kalibrot, an open source Matlab package for robot
kinematic calibration. Kalibrot has been designed to simplify
robot calibration and easily assess the calibration results. Beside
computing the optimal parameters, Kalibrot provides a visual-
ization layer showing the values of the calibrated parameters,
what parameters can be identified, and the calibrated robotic
structure. The capabilities of the package are here shown
through simulated and real world experiments.

I. INTRODUCTION

Robot kinematics allows the structure of a robot to be
modelled, mapping the joint values to the operational space,
usually a six-dimensional Cartesian space. Kinematic mod-
elling is of utmost importance because it is the foundation of
kinematic control. If the model of the robot is known, proper
control strategies can be implemented, for instance, to have
trajectory tracking. Having good kinematic models allows to
properly control the robotic system, without requiring com-
plex compensation strategies, which is essential especially in
cases where it is not possible to rely on external sensors to
compensate for positioning errors.

There exist a large variety of robotic structures, such as
rigid-link articulated robots, flexible-link robots, continuum
robots, soft robots. Depending on the structure, different
modelling techniques exist [1]–[3]. Articulated robots with
rigid links are usually modelled by using Denavit-Hartenberg
convention [3]. This is a simple and effective method which
allows to characterize the pose of a link of a robot with
respect to the previous link by using a set of parameters
(DH parameters) related to the link geometry and the joint
type (revolute or prismatic) as in Figure 1.

The DH parameters, however, are usually assigned based
on considerations from the structure of the link and their
values may not be accurate due to errors such as manufac-
turing inaccuracies or joints offsets. This, in turn, leads to
unwanted positioning inaccuracies of the robot. The purpose
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Fig. 1: Denavit-Hartenberg parameters representation [3].

of kinematic calibration is thus to reduce the modelling errors
in the system [4]. The calibration problem can therefore
be formulated as an optimization problem where the cost
function is the error between the measured robot end-effector
pose and the modelled one, and with the DH parameters
being the optimization variables [3], [4].

The first step for an optimal calibration is data acquisition.
Many different sensors have been adopted in order to collect
the position data of the end-effector, varying from laser
trackers [5], optical trackers [6], stereo-vision systems [7].
Other approaches consist in constraining the end-effector to
a specific movement, where joint angle values are collected
through a probe triggering [8].

After data collection, the identification procedure is carried
out. Different methods exist in literature such as two step
nonlinear optimization [9], Unscented Kalman Filter [10],
product of exponential formula [11]. However, the most
typical approach is based on a linearization of the nonlinear
cost function and then iteratively solving the linear problem
in a least squares sense until convergence [3], [12].

Thus far, no software is available online to allow
performing robot calibration easily, especially for
inexperienced users. Moreover, calibration data and
exact parameters for widely used robots are very hard
to find online. Therefore, this work aims to providing
a simple-to-use open-source Matlab package for robot
kinematic calibration, named Kalibrot (available at
https://github.com/cursi36/Kalibrot). Additionally, we would
like to provide an open-source database to store calibration
datasets of commonly used manipulators, in order for the
community to have easier access to this information and be
able to build more accurate simulation. Currently, Kalibrot
focuses only on DH parameters optimization and it allows
the user to set up and solve the calibration problem very
easily, by using the implemented functions. Two different



solvers are implemented to solve the calibration problem.
Since the solution of the optimization problem for parameter
identification requires computing the derivatives of the
cost function with respect to the DH parameters, Kalibrot
performs automatic differentiation to compute the derivatives
of the cost function for the DH parameters optimization
analytically. Beside the calibrated DH parameters, Kalibrot
also provides other useful information about the calibration,
such as the number of parameters that can be identified and
the observability measures for assessing the accuracy of
the data. Moreover, the visualization layer allows the user
to plot the calibration results and visualize the calibrated
robot kinematic structure. However, the capabilities of
Kalibrot can be further improved by adding other functions
or plugins and we would encourage the community to
contribute to expand its features.

The paper is thus organized as follows. Section II briefly
describes the problem of robot kinematic calibration. Section
III describes the proposed package Kalibrot for kinematic
calibration, presenting its architecture and its functionalities.
Section IV shows the results both in simulated and real world
experiments using Kalibrot. Finally, conclusions are drawn
in Section V.

II. ROBOT KINEMATIC CALIBRATION

In this section the kinematic calibration problem is for-
mulated, presenting the robot kinematic modelling and the
optimization problem for parameter identification.

A. Robot Kinematic Modelling

Robot kinematic calibration is a necessary step to have ac-
curate robot models, and, therefore, to implement successful
control strategies. Given a certain robot model, the purpose is
to find the optimal modelling parameters that allow the model
to be as accurate as possible. Therefore, robot kinematic
calibration requires an a priori known model of the robot.

Different methods exist to build kinematic models of
robots, yet, one of the most widespread is based on Denavit-
Hartenberg convention. According to this method, the trans-
formation matrix i−1T i ∈ R4×4, relating the pose of a link
i to the preceding one, can be described by means of 4
parameters di, θi, ai, αi and the joint value qi as
i−1T i =

cos(θ̃i) − sin(θ̃i) cos(αi) sin(θ̃i) sin(αi) ai cos(θ̃i)

sin(θ̃i) cos(θ̃i) cos(αi) − cos(θ̃i) sin(αi) ai sin(θ̃i)

0 sin(αi) cos(αi) d̃i
0 0 0 1


(1)

where {
d̃i = di + qi, if joint is prismatic
θ̃i = θi + qi, if joint is revolute

. (2)

di is the distance between two consecutive joints along the
the current joint axis, θi the tilting between the two joints
about the current joint axis, ai the link’s length, and αi the

angle between the two joint axes (Figure 1). Following the
chain rule [3], the robot end-effector pose in a desired world
frame {RF0} can be expressed as

0T ee(q,x) =

[
0Ree

0ree
0 1

]
=

= 0T 1(q1,x1) 1T 2(q2,x2) . . . n−1T ee(qn,xn)

(3)

with 0Ree ∈ R3×3 being the rotation matrix of the
end-effector, 0ree ∈ R3 the end-effector position, xi =[
di θi ai αi

]T
, x =

[
x1 x2 ... xn

]T ∈ R4n, and
q ∈ Rn, being n the number of joints. Thanks to this
representation, it is then possible to extract the end-effector
position and orientation and express it as a nonlinear function
of the joint values and the DH parameters as

P =

[
0ree
0Qee

]
= P (q,x) ∈ R7 , (4)

where 0Qee ∈ R4 represents the quaternion of the orientation
of the end-effector with respect to the base frame. Different
representations for the orientation can also be used.

B. Optimal Parameter Identification

To identify the optimal parameters and correct the actual
robot model, the kinematic calibration problem can be for-
mulated as a nonlinear optimization problem as

x = arg min
x

1

2
||P̃ − P (q,x)||2 , (5)

where P̃ ∈ R7M is a vector resulting from stacking all the
position and orientation measurements at each robot configu-
ration. M is the total number of measurements. However, to
simplify the problem, it is usual to consider a linearization of
the model and then iteratively solve the optimization problem
until convergence [3] as in Algorithm 1. The matrix D is

Algorithm 1 Linearized optimization algorithm.
1: function x← ITERATIVEOPT(x0, P̃ , q)
2: x = x0

3: while err > Err do
4: P ∼ P (q,x) +D∆x . Linearize model
5: ∆x = arg min∆x

1
2 ||P̃ − P (q,x)−D∆x||2

6: x = x+ ∆x
7: end while
8: end function

the Jacobian of the position and orienatation with respect
to all the DH parameters x. This matrix can be computed
numerically, yet it leads to high computational efforts and
lower accuracy in the solution. Moreover, typically the
problem is solved using simple pseudoinversion, leading
to ∆x = D†(P̃ − P ) at each iteration. However, simple
pseuodinversion may not lead to good solutions, since it
doesn’t take into account possible constraints on the values
of DH parameters.
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Fig. 2: Kalibrot workflow: create the robot model; setup the calibration problem; perform the calibration; visualize the
calibration results.

III. KALIBROT: KINEMATIC CALIBRATION PACKAGE

In this section, Kalibrot functionalities are presented, de-
scribing the underlying architecture, the procedure for the
analytical computation of the derivatives of the calibration
cost function, and the implemented formulations of the
optimization problem for DH parameters identification.

A. Kalibrot Workflow

Kalibrot was designed to be simple to use and allow to
setup and solve the calibration problem very easily.

Figure 2 shows the workflow of the package. First, the
robot model needs to be built. This is done by specifying the
number of links and their types (if prismatic or revolute). The
RobotKinematics class then creates the robot model. This
class also implements the functions for computing the robot
kinematics. After the robot model is created, the calibration
problem is set up. The data, consisting in a set of joint values
and corresponding poses (expressed in terms of 3D Cartesian
position and quaternion), is loaded and the DH parameters
are initialized with some initial guesses. Some bounds on
the values of the DH parameters can be imposed, depending
on what solver is used, as described in the following. The
user can select what parameters to optimize for and what
motion component to take into account for the calibration
(e.g. considering only the 3D position, without any regard for
the orientation). Then the solver is chosen and the calibration
run. At the end of the calibration, the user can choose to
enable the visualization of the results. A snippet of the code
for using Kalibrot is shown in the complementary video.

B. Analytical Derivatives Computation

In order to compute the derivatives of the position and
orientation vectors with respect to the DH parameters, ana-
lytical methods are preferred to numerical ones because they
do not rely on approximations and because they are faster.
Symbolic toolboxes, like Matlab, can be used to retrieve
P (q,x) symbolically as a function of the DH parameters.
This allows to also directly find the Jacobian matrix D very
easily. Nevertheless, the computation is not very fast. The
approach implemented in Kalibrot allows to easily compute
the matrix of derivatives for any given robotic structure,
simply defined by the DH parameters. For the sake of brevity,
the whole derivation is not reported in the manuscript.

For the analytical computation of the derivatives, an iter-
ative method can be employed. As a matter of fact, from
(3) the position vector of the end-effector for an n degree of

freedom (DOF) robot can be computed iteratively as

0ree = 0r1 + 0R1
1ree

1ree = 1r2 + 1R2
2ree

...
n−1ree = n−1rn +n−1 Rn

nree ,

(6)

where i−1ri,
i−1Ri are the position and orientation matrix

of joint i with respect to the previous one, iree is the position
of the end effector with respect to the joint i.

Therefore, for a given link i, the differential of the position
can be written as

i−1dree = i−1dri + i−1dRi
iree + i−1Ri

idree (7)

However, from (1), the differentials i−1dri and i−1dRi

depend only on the link’s DH parameters xi =[
di θi ai αi

]T
and can be easily computed in closed

form. Eventually it is possible to iteratively compute the end-
effector differential in the base frame as
0dree =Dp1dx1 + 0R1Dp2dx2 + · · ·+0 Rn−1Dpndxn =

= Dpdx ,
(8)

with each Dpi being a matrix of derivatives of the position
and rotation matrix for each joint, and Dp ∈ R3×4n.

With regards to the orientation, the quaternion of the end-
effector frame can be expressed as

0Qee = 0Q1 ∗ 1Q2 ∗ · · · ∗ n−1Qn , (9)

where ∗ is the Hamilton or quaternion product [3], and
i−1Qi = {ηi, ξi} describes the orientation of i−1T i, with
ηi ∈ R and ξi =

[
ξi,x ξi,y ξi,z

]T ∈ R3 .
In order to compute {ηi, ξi}, one must first obtain i−1Ri.

Since this rotation matrix depends only on the actual link’s
DH parameters xi =

[
di θi ai αi

]T
, the differential of

the quaternion can be computed as

i−1dQi = {dηi, dξi}
with
dηi = Dηidxi ∈ R
dξi = Dξidxi ∈ R3

(10)

These derivatives can be easily computed analytically.
From (9) and from the definition of the quaternion product

[3], for a given link i it is then possible to write

0ηi = 0ηi−1ηi − 0ξTi−1ξi
0ξi = 0ηi−1ξi + ηi

0ξi−1 + 0ξi−1 × ξi
, (11)



which yields the following results
0dηi = 0dηi−1ηi + 0ηi−1dηi − 0dξTi−1ξi − 0ξTi−1dξi
0dξi = 0dηi−1ξi + 0ηi−1dξi + dηi

0ξi−1+

ηi
0dξi−1 + 0dξi−1 × ξi + 0ξi−1 × dξi

.

(12)
Since 0dηi−1 and 0dξi−1 depend only on the DH parameters
of all the preceding links x1 . . .xi−1, it is then possible to
obtain

0dQi =

[
0dηi
0dξi

]
=

[
Dηi−1

Dηi

Dξi−1
Dξi

]
dx1

dx2

...
dxi

 . (13)

Finally, the end-effector quaternion differential can be ob-
tained as

0dQee = Dordx , (14)

with Dor ∈ R4×4n. From (8) and (14) the pose Jacobian
matrix with respect to the DH parameters, for each data

point m = 1 . . .M , is computed as Dm =

[
Dp

Dor

]
. These

matrices are then stacked together for solving the calibration
problem, to obtain

D =

D1

...
DM

 ∈ R7M×4n . (15)

A similar approach is to consider each DH parameter as an
active joint [13], but this would require to iterate through the
robotic kinematic chain and add the DH parameters as new
joints, resulting in less flexibility.

C. Kalibrot Calibration Solvers

The ease of use of Kalibrot resides also in the possibility to
choose different solvers and methods for the calibration prob-
lem. Currently two different approaches are implemented:
• Pinv: based on standard pseudoinversion (as in Algo-

rithm 1);
• QP: constrained Quadratic Programming solver.

Other methods can be easily implemented in the Kalibrot
framework as additional plugins.

For the Pinv method, the optimal DH parameters are
obtained by iteratively solving the following optimization
problem

∆xj = arg min
∆xj

1

2
||W (P̃ − P (q,xj))−WDjW p∆xj ||2+

λ||∆xj ||2
,

(16)
which results in the damped least squares solution ∆xj =
H−1g, where H = W T

pD
T
jW

TWDjW p and g =

W T
pD

T
jW

TW (P̃−P (q,xj)). The diagonal matrix Wp ∈
R4n×4n is a matrix of zeros and ones used to choose
which parameters to optimize for. Dj is the matrix of
derivatives (15) computed with the current estimates of the
DH parameters at iteration j. The matrix W, instead, is

used to assign different weights to the data points or to
choose which Cartesian component to optimize for. The
regularization term λ||∆xj ||2 is added in order to limit the
error between the linearized model and the actual model.
As a matter of fact, if the resulting increment of the DH
parameter is too big, the model linearization fails. The
parameter λ is updated in a Levenberg-Marquardt algorithm
[14] fashion. An initial value is provided by the user. If the
current DH parameters update leads to a worse value of the
cost function, then the solution is discarded and λ increased;
otherwise the DH parameters are updated and λ decreased.
The process continues until the cost functions goes below a
certain threshold.

Obtaining the increment of the DH parameters at each
iteration simply by using the pseudoinversion may not lead
to a feasible solution. As a matter of fact, this approach will
only try to minimize the error between the actual estimated
pose and the measured one, yielding optimal DH parameters
that may be unnatural (i.e. negative or very large ai or
di). This occurrence is much more likely if the initial DH
parameters are far away from the optimal ones or if the
acquired data is not good enough.

In order to overcome this problem, the QP solver can be
employed, which solves, at each iteration j, a constrained
quadratic programming problem (QP) as

∆xj = arg min
∆xj

1

2
||W (P̃ − P (q,xj))−WDjW p∆xj ||2+

λ||∆xj ||2

s.t lbj ≤ ∆xj ≤ ubj

.

(17)
The bounds lbj ,ubj are updated at each iteration in order
to guarantee that the DH parameters always lie between
the imposed bounds xmin,xmax. The bounds are therefore
computed as lbj = xmin − xj and ubj = xmax − xj . The
same adaptation of λ as in the Pinv solver is used and the
solver stops when the cost function is below the imposed
threshold.

D. Additional Outputs

Beside the DH parameters estimation, Kalibrot provides
additional information about the calibration procedure: the
base parameters and some observability measures. Both the
base parameters and the observability measures depend on
the Jacobian matrix D (15), and, because of the nonlinear
kinematic model and the iterative linear approximation, they
may change from one iteration to the next one. Therefore,
the solvers output the base parameters and the observability
measures at each iteration.

1) Base Parameters: The possible rank deficiency in the
Jacobian matrix D leads to some parameters not being iden-
tifiable or identifiable only in combination with other param-
eters. The base parameters correspond to these combinations
and represent a minimum set of identifiable parameters [15].
To detect the base parameters Singular Value Decomposition
(SVD) can be used.
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Fig. 3: Resulting plots after the calibration: 3a) the final and initial DH parameters estimations; 3b) the final estimated robot
kinematic structure; 3c) the final identification matrix of the base parameters K (18).

At each iteration j, given the Jacobian matrix Dj ∈ Rd×N
for the whole set of datapoints, with d = 7M and N = 4n,
the SVD yields Dj = USV T . If r is the rank of Dj, then,
because of rank deficiency, V =

[
V 1 V 2

]
, with V 2 ∈

RN×N−r, whose columns define the linear combinations of
the columns of Dj .

Following the approach defined in [15], in order to find
the base parameters, a permutation of the rows of V 2 needs

to be performed, such that LT∆xj =

[
∆xj,1
∆xj,2

]
and

LTV 2 =

[
V 1,1

V 2,2

]
, with ∆xj,2 ∈ RN−r being the param-

eters that can only be identified in linear combination with
the others, V 2,2 ∈ RN−r×N−r, and L being a permutation
matrix that needs to be chosen such that V 2,2 is regular. The
set of base parameters ∆xj,B ∈ RN can then be retrieved
as

∆xj,B =

[
∆xj,1 − V 1,1 − V −1

2,2∆xj,2
0

]
= Kj∆xj . (18)

The identification matrix Kj is useful to assess which pa-
rameters can be identified, and which ones can be identified
only in linear combination with other DH parameters.

2) Observability measures: The observability measures
give information about the accuracy of the estimations.
Kalibrot computes the following measures:

• D-observability defined as o1 =
√
det(DTD) [16];

• Condition number which computes o2 = σmax

σmin
, with

σmax, σmin being the minimum and maximum eigen-
values of D [17];

• Minimum singular value which defines o3 = σmin [13].

E. Visualization

To make it easier for the user to analyze the results,
Kalibrot also provides the possibility to visualize the outputs
of the calibration. Figure 3 shows an example of the plots
made by Kalibrot at the end of the calibration procedure.
First of all, the resulting DH parameters are shown, along
with the initial estimates. If QP solver is chosen, then also
the imposed bounds are shown (Figure 3a). The obtained

DH parameters are used to build and construct the robotic
structure (Figure 3b). A specified configuration can be cho-
sen by assigning the desired joint values. Finally, the final
identification matrix K (18) for the identification of the base
parameters is shown in a binary form. If a base parameter
depends on a specific DH parameter, then the corresponding
cell will be black, otherwise it will be white. If multiple cells
are black on the same row, then that base parameter is a linear
combination of those DH parameters. For instance, Figure 3c
shows that d1 can be identified independently of the others,
whereas dn cannot and it is in a linear combination with θn
to define the base parameter ∆xb. The entries of K define
the values of the coefficients for each linear combination.

IV. RESULTS

In this section the results of using Kalibrot for robot
calibration are shown, both in simulation and on a real robot.

A. Simulated DH Parameters Optimization

To prove the capabilities of Kalibrot, two simulated ex-
amples are proposed: kinematic calibration of a 3R planar
robot, and of a 6DOF Stanford manipulator (Figure 4).

In order to generate the data, the robot kinematic models
are built by assigning some desired DH parameters (Table Ia
and Ib). As proposed in [18], [19] for workspace generation,
all joint combinations are computed, considering that each
joint can have two states: fixed or moving. In total, 2n − 1
combinations are obtained. At each combination, the moving
joints are commanded a sinusoidal motion to move from
the minimum to the maximum joint limits. Each sinusoid is
discretized in 51 points, resulting in a total of 51 · (2n − 1)
data points collected. For each commanded joint value, the
corresponding end-effector pose is collected, expressing it
in terms of 3D Cartesian position and quaternion. Gaussian
noise, with zero mean and variance of 0.1m for the 3D
position and 0.05rad for the quaternion components, is also
added. An initial estimate for the DH parameters is then
used to build the robot model. In addition, some bounds on
the value of the DH parameters are also imposed, which are
needed to use the QP solver.



TABLE I: DH parameters for building the simulated robot kinematic models of: Ia) planar 3DOF robot; Ib) 6 DOF Stanford
robot. The di, ai are in m, αi, θi in rad and the values in brackets indicate the initial guesses.

(a) DH parameters for the planar 3 DOF
robot

joint 1 2 3
d 0 0 0
θ 0 0 0
a 1 (0.9) 0.5 (0.4) 2 (1.9)
α 0 0 0

(b) DH parameters for the 6 DOF Stanford robot

joint 1 2 3 4 5 6
d 1 (0.9) 1.5 (1.35) 0 (0) 0.5 (0.3) 0 (0) 0.1 (0.05)
θ −π/2 (−π/2) π (π) 0 (0) −π/2 (−π/2) −π/2 (−π/2) 0 (0)
a 0 (0.1) 0 (0.05) 0 (0) 0 (0.05) 0 (0.7) 0 (0)
α −π/2 (−π/2) −π/2 (−π/2) 0 (0) π/2 (π/2) −π/2 (−π/2) 0 (0)
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Fig. 4: Comparison of the results for the kinematic calibration of the 3DOF and the 6DOF arm using both the Pinv and QP
solvers. The initial guesses are shown by black dots; the red vertical lines indicate the imposed bounds on the parameters.
The errors are between the real values of the simulated DH parameters and the computed ones. The values of di, ai are in
m, and αi, θi in rad.

Figure 4 shows the results by using the two currently
implemented Pinv and QP solvers. For the calibration of
the 3DOF arm, only the θi and ai for each joint are
optimized, and only the x, y Cartesian components of the
tip position and the orientation about z are considered, due
to the planar nature of the robot. The DH parameters and
motion component selection is possible by properly choosing
the entries in the matrices W p and W used in (16) and
(17). For the calibration of the 6 DOF Stanford manipulator,
instead, all the parameters and all the motion components
(both position and orientation) are chosen.

Results show that the solvers perform very similarly and
well in the calibration of the 3 DOF planar robot, with
small errors between the simulated DH parameters and those
computed by the solvers. Some larger errors occur in the
estimation of θ2 and θ3, with the QP solver yielding slightly

better values. On the calibration of the 6 DOF robot, instead,
adding some bounds on the values of the DH parameters
leads to better performances. In fact, the errors obtained by
the QP solver result to be smaller than those from Pinv
solver, especially for θ3 and θ4. On the calibration of the
3DOF arm, both solvers converged in 11 iterations, whereas
on the 6DOF QP converged in 26 iterations and Pinv in
22 (Figure 6). Finally, Figure 5 shows an example of the
final identification matrix K and it indicates that for the 3
DOF robot di and αi are not identifiable. In fact, they have
not been selected for the optimization. The other parameters,
instead, can be identified independently. For the 6 DOF
Stanford manipulator, given the current configuration and
data points, there are two parameters that cannot be identified
independently: a3 and d4 can only be identified in linear
combination with other parameters.
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B. Real Robot Kinematic Calibration

Kalibrot has also been used to calibrate a real KUKA LBR
IIWA 14 robotic arm, starting with some incorrect initial
DH parameters, corresponding to a KUKA LBR IIWA 7
arm. Similarly to the simulation case, in order to collect the
data, all combinations of joints are excited with a sinusoidal
motion. The tip positions are collected by using Vicon
Markers (Figure 7) and Vicon tracking system [20], yet any
other sensors could also be used. The markers are placed
on the robot’s end-effector and on the robot’s base, with
those at the base positioned in such a way that the center of
the polygon they define can geometrically locate the robot’s
origin. This also allows the measurement from the markers at
the tip to be referred with respect to the robot’s base frame.
In total 63500 data points were collected and divided into a
training set (80%) and a test set (20%).

Table II reports the Mean Squared Errors (MSE) on both
datasets. Both QP and Pinv solvers allow to have very
small errors on both datasets and yield similar DH values, as
shown in Figure 8a. In this test QP solver converged in 12
iterations and Pinv in 6, yet QP solver manages to produce
smaller offsets in the θ and α values. Figure 8b shows the
Cartesian trajectory on a subset of the test dataset when
using the robot model with the initial DH parameters and
with the calibrated parameters from both solvers. Table III
reports the initial and the calibrated DH parameters. Results
show that the initial model has large errors especially in
the z direction. The MSE with the initial model on the
test dataset result to be 21.6mm2, 5.94mm2, and 1469mm2

along x, y, z respectively. Thanks to the calibration smaller
errors are achieved.

KUKA  
Robot

Vicon 
Markers

Fig. 7: Exemplary setup for data acquisition on the real
KUKA arm.

V. CONCLUSIONS

In conclusion, this paper presented Kalibrot, an open-
source Matlab package for solving the problem of robot
kinematic calibration. Kalibrot is an easy-to-use package
whose goal is simplifying robot kinematic calibration pro-
cedure, especially for inexperienced users. The architecture
of Kalibrot allows for:

• simple definition of a robot model by using the
RobotKinematics class;

• easy calibration setup with the possibility to choose
between different solvers, select what parameters to
optimize for, and what Cartesian component to consider;

• visualization and analysis of the results by means of
the visualization layer which plots the calibrated DH
parameters and the calibrated kinematic structure;

• additional assessment of the calibration results by re-
turning the the identification matrix and observability
measures to analyse what parameters can be identified
and the accuracy of the calibration.

In this manuscript, the capabilities of Kalibrot have been
shown by performing calibrations of different robot types,
both in simulation and in a real world scenario.

At the current stage, Kalibrot deals only with optimization
of the DH parameters and provides two solvers. However
all components in Kalibrot are written in a flexible and
extensible way, which allows user-specific definition. Dif-
ferent robotic structures can be implemented by editing
the RobotKinematics class and additional solvers can be
included. We would like to encourage the robotic research
community to take advantage of this research-friendly soft-
ware and contribute to improving it and the availability of
calibration datasets .

TABLE II: MSE (in mm2) from the QP and Pinv solvers
for the real KUKA robot arm on the training and test datasets.

Training Set Test Set
x y z x y z

QP 1.63 0.17 0.07 1.59 0.17 0.07
Pinv 1.63 0.16 0.06 1.59 0.16 0.07
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Fig. 8: Results for the calibration of the real KUKA robot
arm: 8a) comparison of the calibrated DH parameters with
Pinv and QP solvers.The di, ai are in m, αi, θi in rad; 8b)
comparison of the Cartesian trajectory between the collected
data, the initial model, and the calibrated models.

TABLE III: The DH parameters on the real KUKA arm.
The d, a are in m and θ, α in rad: IIIa) real and initial (in
brackets); IIIb) Pinv solver; IIIb) QP solver.

(a) Real and initial DH parameters
joint 1 2 3 4 5 6 7

d 0.36 (0.34) 0 (0) 0.42 (0.40) 0 (0) 0.40 (0.40) 0 (0) 0.126 (0.126)
θ π (π) π(π) 0 (0) π (π) 0 (0) π (π) 0 (0)
a 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
α π/2(π/2) π/2(π/2) π/2(π/2) π/2(π/2) π/2(π/2) π/2(π/2) 0 (0)

(b) DH parameters from Pinv solver

joint 1 2 3 4 5 6 7
d 0.3562 0.0038 0.4239 -0.0035 0.402 -0.004 0.1269
θ 3.1395 -3.1212 0 -3.1404 -0.0021 3.1417 0.0011
a -0.001 -0.0179 0.0099 0.0088 -0.0014 -0.0015 0
α 1.5705 1.5720 1.5653 1.5585 1.5978 1.5669 0

(c) DH parameters from QP solver

joint 1 2 3 4 5 6 7
d 0.3562 0.0040 0.4240 0 0.4021 0 0.1269
θ 3.1393 3.1416 0 3.1344 -0.0024 3.1408 0
a -0.0012 0 0 0.0028 0 0 0
α 1.5706 1.5725 1.5651 1.5650 1.5881 1.5887 0
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