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Abstract. This paper presents a novel autonomous air-hockey playing
collaborative robot (cobot) that provides human-like gameplay against
human opponents. Vision-based Bayesian tracking of the puck and striker
are used in an Analytic Hierarchy Process (AHP)-based probabilistic
tactical layer for high-speed perception. The tactical layer provides com-
mands for an active control layer that controls the Cartesian position
and yaw angle of a custom end effector. The active layer uses optimal
control of the cobot’s posture inside the task nullspace. The kinematic
redundancy is resolved using a weighted Moore-Penrose pseudo-inversion
technique. Experiments with human players show high-speed human-like
gameplay with potential applications in the growing field of entertain-
ment robotics.
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1 Introduction

Robots are expanding from strictly industrial applications to closer interactions
with humans. Two major applications of such close encounters are in home-care
robotics [5] and entertainment robotics [10], which naturally raises the ques-
tion of how to make user interaction with robots both enjoyable and safe. In
this paper, we focus on air hockey which is a challenging example of an arcade
game where humans can physically play against robots. An air-hockey table is a
constrained 2D environment which is ideal for testing high-speed robot motion
planning. However, strategies to master the game involve trajectory prediction,
high puck speed, and uncertainty management. Therefore, air hockey presents
an easy-to-learn yet hard-to-master task for robots to perform effectively against
a skilled opponent.

In this work, we program a Panda collaborative robot (cobot) arm, here-
inafter referred to as the Panda arm, to play air hockey, as shown in Fig. 1. This
cobot is relatively new to robotics research, only released in 2017 by Franka
Emika GmbH [6]. Recent works have implemented robotic entertainment appli-
cations using different approaches and other robotic arms. In [10], a dual system

https://www.imperial.ac.uk/robot-intelligence/
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Fig. 1. General setup for the air-hockey task. A Sony PlayStation Eye camera is fixed
on top of the table using a plywood structure. The puck and striker are colored with
bright tones for ease of filtering. The Panda arm stood at the far side of the table with
its custom-made end effector.

composed of a tactics layer governing patterns of gameplay and a skill layer gov-
erning individual shots is introduced with a custom robotic arm. In [8], a Barett
WAM arm is used with a three-layer system: motion control, short-term strategy
and long-term strategy - adapting its playstyle to the opponent. Other studies
also used various control strategies such as learning from movement primitives
[1], task-switching [2], with fuzzy control [14], using weak points of the human
vision [9], and more recently using Deep Reinforcement Learning [12].

This paper proposes a novel architecture for air-hockey playing cobots using
Bayesian filtering for perception, nullspace-based posture optimization for robot
motion, and a combined Analytic Hierarchy Process (AHP) and probabilistic
tactical framework for human-like behavior. The proposed architecture comprises
two layers: (1) a tactical layer, implementing the high-speed perception, motion
prediction, and strategy planning; and (2) an active layer, implementing the
robot movement execution via optimal control. The two layers are introduced in
Sections 2 and 3, followed by experimental results in Section 4.

2 Tactical Layer: Determination of Cobot Actions

In a competitive game, the puck can cross the entire length of the air-hockey
table in a mere hundred milliseconds, which is similar in speed to the human
vision reflex [13]. A human player needs to predict the trajectory of the puck
using the movement of the opponent’s striker and the configuration of the table,
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which is implemented for the cobot using a Bayesian framework that mimics the
decision-making process of humans [4][16].

2.1 Computer Vision: Kalman Filtering-Based Predictive Approach

A Sony PlayStation Eye camera with a (320×240) pixels resolution and a 187 Hz
frame rate is used to detect the position of the puck at a high speed. The 2D table
frame is represented by a rectangle (W × L) (width × length) associated with
a Cartesian coordinate system (x, y). Calibration between the air-hockey table
frame and the camera frame is done using a least-squares method. Moreover,
a 2D affinity that optimally matched the (xc, yc) camera frame to the (xr, yr)

cobot frame is obtained, having the form
[
xr yr 1

]T
= S

[
xc yc 1

]T
where S is a

homogeneous transform. A method based on the Moore-Penrose pseudo inverse
is used to determine the coefficients of S along with training points from the
camera frame and the cobot frame [7].

A flowchart representing the general functioning of the tactical layer is shown
in Fig. 2. Positions of the puck and the human player’s striker (hereon referred
to as the striker) are obtained using color filtering and contouring. The striker
and the puck are tracked to be able to predict the puck trajectory before it is hit
by the human player, so that the cobot has a longer time window to move before
the puck arrives at a position within its reach. For this matter, Kalman filtering
[11] is used as it provides a simple framework to deal with state prediction and
uncertainty under a Gaussian assumption:

−→
Xµ =

[
x y vx vy

]T
, C =

[
1 0 0 0
0 1 0 0

]
,
−→
Y = C

−→
Xµ

Where x, y is Cartesian position, vx, vy is Cartesian speed,
−→
Xµ is the object’s

state vector expected value, C is the measurement transition matrix and
−→
Y is the

measurement vector. Along with
−→
Xµ, the state of the object is associated with

the co-variance matrix Σ. Both define a normally distributed random variable.
Acceleration is ignored as it is modified frequently and non-linearly by external
sources (mainly human and cobot actions). At any given time in the future, the
predicted position of the object can be obtained by repetitively applying the
operations:

−→
Xµ(t+ dt) = A

−→
Xµ(t) (1)

Σ(t+ dt) = AΣ(t)AT (2)

where dt is the time-step since the last measurement and A is the state
transition matrix. (1) returns a position in R2 that neglects puck bounces against
the table walls. For those bounces, we make the assumption of a perfectly elastic
model with infinite inertia for the walls compared to the puck. The table is



4 A. AlAttar et al.

Fig. 2. General tactical layer flow chart.

modelled with two walls at y = 0 and y = W . For a single bounce on the y = W
wall, for example, this results in these equations:

−→
Xµ ←


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

−→Xµ +


0

2W − y
0
0

 (3)

Σ ←


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Σ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


T

(4)
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Equation (3) introduces a non-linear operation, which is not suitable for the
Kalman framework. To deal with this limitation, we use a variant of the particle
filter [3] as follows:

– We sample a population
−→
Xi, i = 1..N, N > 1000 from the normal distribu-

tion defined by
−→
Xµ and Σ

– For each particle
−→
Xi we repetitively apply (1) and (3) for future predictions

– The future state expected value and co-variance can be obtained as:

−→
Xµ fut. st. =

1

N

N∑
k=0

−→
Xi =

−→
X ′, Σfut. st. =

1

N

N∑
k=0

(
−→
Xi −

−→
X ′) ∗ (

−→
Xi −

−→
X ′)T

Estimates for future states when the puck is close to the table limits are
theoretically improved by this method when N → ∞. A quicker estimate can
always be obtained by simply applying (3) and (4) to the expected value of the
state at time (t+ n× dt) for n > 0.

To deal with puck-striker contacts, we make the assumption of an infinite

striker inertia compared to the puck inertia. With
−→
X puck and Σpuck referring to

the puck’s state and
−→
X striker referring to the striker’s state we reason as follows:

– We have the puck and striker states evolve with (1) and (2) until either a
time limit is reached or the distance between puck and striker is inferior to
the sum of their respective radii;

– If the latter is true, the surface between the two objects is defined by its

normal unit vector
[
cos(θ) sin(θ)

]T
:

−→
X s. ref
puck =

−→
X puck −

−→
X striker, θ = atan2(

−→
X s. ref
puck [1],

−→
X s. ref
puck [0])

Rθ =


cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 cos(θ) − sin(θ)
0 0 sin(θ) cos(θ)


– The puck then elastically bounces on the surface:

M = Rθ ∗


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ∗R−1θ
−→
X puck ←

−→
X striker + M ∗

−→
X s. ref
puck , Σpuck ←M ∗Σpuck ∗MT

By combining all the previous points, we update the estimated puck state
vector using camera measurements. Using this updated state, we then predict
the puck’s future state expected value and co-variance matrix at any given time
by taking into account bounces on the walls and human player’s potential strikes.
This provides an effective online state-estimate filtering framework, with mea-
sures of uncertainty in future predictions which is useful for strategy-making.
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2.2 Strategy-Making: AHP-Based Probabilistic Behavior

The filtered state and equations specified in the previous section are sufficient to
determine the set of future positions and velocities for the puck up to a certain
point. Performing a Principal Component Analysis (PCA) on the co-variance
matrix of the puck’s position determines the first principal component: the cor-
responding eigenvalue is taken as a measure of the uncertainty of the prediction,
and the eigenvector is taken as the Cartesian direction of maximum uncertainty.
Combining those elements, among the set of future puck positions, we find the
closest to the current cobot end-effector position −→x cobot. We name this optimal
position −→x target and its corresponding speed −→v target. We also determine the
corresponding time of arrival, how uncertain that prediction is, and the safest
axis on which we maximize the probability to reach the puck, i.e. the direction
defined by the aforementioned eigenvector. This set of variables is hereon re-
ferred to as the target. To obtain diverse gameplay, following the methods of
[10] we built a set of skills, standard actions that depend on the cobot and puck
relative positions. This ensemble is hereon referred to as the skillset :

– Ready: the cobot returns to its own goal position;
– Defend: the cobot moves to −→x target and stops;
– Stop: the cobot intercepts the puck at −→x target with a speed 0.5−→v target
– Counter: the cobot intercepts the puck at −→x target with a speed −2−→v target
– Cut: the cobot intercepts the puck at −→x target from −→x cobot
– Smash: the cobot strikes the puck at −→x target towards the opponent’s goal
– Rally: the cobot strikes the puck at −→x target towards the human player’s goal

with a bounce on one of the walls

Once this skillset is defined, we then specify at any point during the game
what kind of event should trigger the execution of a skill by the cobot. For
this purpose, we explored different possible trigger events, for instance human
player’s strikes, bounces on the walls, and time elapsed. Most of them resulted
in an erratic behavior for the cobot, either not reacting to an obvious incoming
shot or continuously triggering inconsistent skills. We thus settle on a simple
event: when −→x target is predicted to be on the cobot’s side of the table with a
speed not indicating a movement towards the other side. Once the cobot decides
that an action needs to be taken, we then specify a way to discriminate the skills
in the skillset to select the most relevant. We do not systematically select the
most relevant skill to provide the cobot’s gameplay with some unpredictability.
To discriminate between the skills, we combine the frameworks of [8] and [10]:

– We define three normalized metrics continuously updated during the game
by combining at any given time the target, cobot, and striker information:
risk factorR (assessing the risk for the cobot to concede a goal), win factorW
(assessing the possibility to score a goal) and availability factor A (assessing
how easy it is to reach the target and how much the prediction can be
trusted). For each factor, 0 indicates a bad context for the cobot and 1 a
good context.
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– As in [8], using an AHP [15], we define a static Pairwise Comparison Matrix
(PCM), describing the relative preference for a skill compared to another
one according to a given criteria (R, W or A). In our case, we define three
(7×7) matrices ΦR, ΦW , ΦA respectively associated to the (7×1) normalized
first principal components −→ϕR, −→ϕW , −→ϕA.

– When an event triggers the choice for a skill at time t, each skill is assigned

to a probability specified by the (7× 1) probability vector
−→
P as follow:

S(t) = R(t) +W(t) +A(t)

R′(t) =
R
S
W ′(t) =

W
S
A′(t) =

A
S

−→
P (t) =


...

...
...

−→ϕR
−→ϕW

−→ϕA

...
...

...


R′W ′
A′


– As in [10], a skill is then randomly sampled from the skillset according to

−→
P

and executed by the cobot. The skill is stopped when the predicted time of
arrival of the puck at the target is reached. If the puck now moves towards
the human’s side of the table, the cobot performs a Ready skill, otherwise a
trigger event runs the previous steps again.

This framework uses the rich information provided by the target to select
a skill in a considered yet randomized way among several possibilities. The un-
certainty management and unpredictability resulting from this approach mimic
human behavior [4][16], creating an interesting and variable gameplay.

3 Active Layer: Implementation of Cobot Actions

The active layer in the proposed architecture implements the robot movement
execution via optimal control. The main goal is to maximize the end-effector
velocity without exceeding the individual joint-level speed limits. Compared to
setups in [10] or [14], the usage of a 7-DoF robot may be suboptimal since the
workspace is only a 2D plane. However, the Panda arm’s safe interaction with
users makes it a suitable option for safe gameplay in close human proximity.
Note that the z-dimension (normal to the air-hockey table) and the roll, pitch
and yaw orientations are not constrained by design and need to be dealt with
inside the controller.

3.1 Software Implementation: Translation of PD Commands into
Joint Velocities

Desired cobot end-effector (EE ) Cartesian positions are sent by the tactical layer
through ROS at a frequency of 500 Hz. A real-time Linux kernel was used to
minimize the control latency. Four dimensions are being controlled as described
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in the next section. These dimensions represent the (xd, yd) desired position in
the air-hockey table frame, the zd dimension that needs to be fixed so that the
EE stays in contact with the table, and the orientation of the EE in the table
frame that is equivalent to its yaw = αd angle.

The Panda arm’s library allows the return of a (4×4) transformation matrix
T 0
EE , linking the EE frame to the cobot reference frame. Using this matrix, the

cobot current position (xc, yc, zc, αc) is:

xc = T 0
EE [0, 3], yc = T 0

EE [1, 3], zc = T 0
EE [2, 3], αc = atan2(T 0

EE [1, 0], T 0
EE [0, 0])

The difference between desired and current Cartesian position serves as an

input to a PD controller to obtain a desired Cartesian acceleration
−̈→
X . Using

a custom symmetric positive definite weighting matrix W we then construct
the equivalent Cartesian impedance matrix Λ and the Jacobian Moore-Penrose
weighted pseudo inverse J4

† [7]:

Λ = (J4WJT4 )−1, J†4 = WJT4 Λ

Where J4 is a (4× 7) EE Jacobian matrix with the four (x, y, z, α) dimen-

sions. Supposing that we know the (7×1) joint velocity vector
−̇→
Q at the previous

timestep, we can derive the joint acceleration
−̈→
Q minimizing the equivalent ki-

netic energy using W as a mass matrix [7]:

−̇→
X = J4

−̇→
Q =⇒

−̈→
X = J̇4

−̇→
Q + J4

−̈→
Q ,

−̈→
Qmove = J†4(

−̈→
X − J̇4

−̇→
Q)

Compared to a situation where we control all six Cartesian dimensions to
operate a movement on the (x, y, z, α) dimensions, using the custom weight
matrix W and the three redundant DoF of the Panda arm allows a better dis-
tribution of the joint speed, further away from upper limits that would cap the
EE movement velocity.

However, this local optimization process can result in long movements, such
as drifting of the arm joint positions (for instance towards positions minimiz-
ing the gravitational potential energy), that ultimately reach joint limits, thus
stopping the process. To prevent this drifting, given the arm joint positions
(q1, ..., q7), we implement a gradient descent optimization with damping on the
cost function Ω inside the three DoF nullspace:

Ω =
1

2

7∑
i=1

(qi(t)− q0i )2,
−→
∇Ω =

q1 − q
0
1

...
q7 − q07

 , −→Ψ = −Pn
−→
∇Ω −Dn

˙−→∇Ω

Where (q01 , ..., q
0
7) are chosen so that the arm kept a straight position as much

as possible, and that Pn, Dn created a slow, non-oscillating, non-overshooting
movement inside the nullspace, disturbing as less as possible the EE movement.
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Fig. 3. Comparison of skillset weighing in a typically safe (top) and more even (bottom)
gamewise situation. The skill weighing varies in the 2 situations yet we can observe a
rather equal distribution in both cases, which guarantees an unpredictable gameplay.

3.2 Hardware implementation: Universal-Joint Based Striker

As explained in the previous section, we choose to limit the EE control to the
four (x, y, z, α) dimensions. To maximize the cobot EE Cartesian speed with a
capped set of joint velocities, we choose to build a custom, partially 3D-printed
EE that transformed a typical six DoF “full-body” movement into a four DoF
“wrist-like” movement as detailed in Fig. 4. To linearly multiply the EE speed
at a given joint rotation speed, we base our design around a 46 cm-long carbon
fiber rod. The tip of the rod, considered as the EE, is linked to the flange frame
by the transformation matrix T flangeEE .

The transformation T flangeEE can be passed (along with a mass and inertia
matrix) to the Panda arm internal models to automatically adapt kinetic and
dynamic functions (notably for the Jacobian calculations used in the previous
section). With this design, by slightly orienting and translating the flange of
the Panda arm, we obtained an amplified EE movement at the tip of the rod.
Moreover, to transmit α = yaw movements on the cobot striker (to orient it
inside the air-hockey table frame), we use a 3D-printed combination of a striker
with a universal joint (see Fig. 4-B): rotations around the carbon rod axis are
fully transmitted to the cobot striker’s α while keeping roll and pitch dimensions
free. The latter are mechanically constrained by the design to always keep the
cobot striker’s surface parallel to the air-hockey table. As the z dimension of the
cobot EE is fixed in the controller, and with a rather large flat surface for the
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Fig. 4. Overview of the custom end effector. (A) General view of the Panda arm. (B)
Close view on the universal joint/striker combination (C) For comparison purpose,
close view on a full body motion striker prototype linked to the Panda flange: the
whole Panda arm mass has to be moved to displace the striker.

striker, the system naturally adapted its roll and pitch to the controlled yaw
dimension. This mechanical design helps the software minimize the joint velocity
for a given Cartesian EE speed by delegating some dimensions’ control to the
mechanics, therefore liberating DoF for the software optimization.

4 Experimentation Results and Analysis

During the experimentation phase, the cobot demonstrates robust gameplay,
able to adapt to a majority of situations1. The main limitations lie in the hard-
ware side and include difficulty to perform EE impulsive movements necessary
for strong strikes and vibrations of the actuators at very high frequency due to
constant small re-adaptations of the desired EE position. The efficacy of some
of the frameworks introduced in this work is assessed in this section.

4.1 Strategy Making: Evolution of Skillset Usage with Game State

The combination of the AHP framework with a probabilistic choice help create a
varied yet logical gameplay as represented in Fig. 3. We deliberately choose not
to implement any pairwise strong difference in the PCM matrices, as this can
create a rather deterministic gameplay, but this factor can be tuned to adjust the
efficiency of the cobot. This result validates the similar approach performed in

1 A video demonstration of the system is available at:
https://www.imperial.ac.uk/robot-intelligence/videos/

https://www.imperial.ac.uk/robot-intelligence/videos/
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Fig. 5. For a given arm +30 cm translation on the y axis, comparison of joint velocity
between (top) a fully constrained “full-body” motion and (bottom) a partially freed
“wrist-like” movement. Wrist-like movement allows for a more evenly distributed joint
velocity, preventing some joints to reach their velocity limit.

[10] by showing a comparable evolution of skill choice weighing depending on the
game situation. We, however, propose AHP as a more unified and transparent
way to assign probability weights regarding different criteria.

4.2 Active layer: Preparation of Joint Velocity

The combination of the custom universal-joint based EE hardware and the soft-
ware weighted Moore-Penrose technique yield a better distribution of the joint
velocities as shown in Fig. 5. For the “wrist-like” movement, we can observe
that the majority of the joint speed is limited to small values away from joint
limits, with no unnecessary compensation of rotation between different joints.
This gives rise to a higher potential for faster more complex movements of the
EE without risking any instability or process breaking issues.

5 Conclusion

In this work, an air-hockey playing cobot, both safe and challenging for hu-
man opponents, is introduced. Inherent uncertainties in the predictions, as a by-
product of Kalman filtering, induced a more natural process of state prediction.
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Along with the AHP-based probabilistic technique that is used for skill selection,
this architecture is a step forward towards a more human-like gameplay in the
expanding field of entertainment robotics. Throughout this research, we found
that the limited joint speeds of the arm combined with the constrained envi-
ronment were two limitations hard to overcome for a high-speed high-frequency
application such as air hockey. Nonetheless, this research highlights the poten-
tial application of cobots, such as the Panda arm, for safe human interactions
in entertainment robotics.
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