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Abstract— We present a novel robot learning approach based
on visual perception that allows a robot to acquire new skills by
observing a demonstration from a tutor. Unlike most existing
learning from demonstration approaches, where the focus is
placed on the trajectories, in our approach the focus is on
achieving a desired goal configuration of objects relative to one
another. Our approach is based on visual perception which
captures the object’s context for each demonstrated action.
This context is the basis of the visuospatial representation
and encodes implicitly the relative positioning of the object
with respect to multiple other objects simultaneously. The
proposed approach is capable of learning and generalizing
multi-operation skills from a single demonstration, while re-
quiring minimum a priori knowledge about the environment.
The learned skills comprise a sequence of operations that aim to
achieve the desired goal configuration using the given objects.
We illustrate the capabilities of our approach using three object
reconfiguration tasks with a Barrett WAM robot.

I. INTRODUCTION

Several robot skill learning approaches based on human
demonstrations have been proposed during the past years.
Many of them address motor skill learning in which new
motor skills are transferred to the robot using policy deriva-
tion techniques (e.g. mapping function [1], system model
[2]).
Motor skill learning approaches can be categorized in two
main subsets: trajectory-based and goal-based approaches.
Trajectory-based approaches put the focus on recording and
re-generating trajectories for object manipulation [3], [4].
However, in many cases, it is not the trajectory that is
important but the goal of the action, for example, solving a
jigsaw puzzle [5] or assembling an electric circuit board. In
such examples, trajectory-based approaches actually increase
the complexity of the learning process unnecessarily.
Several goal-based approaches such as [6] have been devel-
oped to address this issue. For instance, there is a large body
of literature on grammars from the linguistic and computer
science communities, with a number of applications related
to robotics [7], [8]. Other symbolic learning approaches are
focused on goal configurations rather than action execution
[9]. Such approaches inherently comprise many steps, for
instance, segmentation, clustering, object recognition, struc-
ture recognition, symbol generation, syntactic task modeling,
motion grammar and rule generation, etc. Another drawback
of such approaches is that they require a significant amount
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Fig. 1. The experimental setup for a visuospatial skill learning (VSL) task.

of a priori knowledge to be manually engineered into the
system. Furthermore, most above-mentioned approaches as-
sume the availability of the information on the internal state
of a demonstrator such as joint angles, while humans usually
cannot directly access to imitate the observed behavior.
An Alternative to motor skill learning approaches are visual
skill learning approaches [10], [11]. These approaches are
based on observing the human demonstration and using
human-like visuospatial skills to replicate the task. Visu-
ospatial skill is the capability to visually perceive the spatial
relationship between objects.
In this paper, we propose a novel visuospatial skill learn-
ing approach for robot object reconfiguration tasks. Unlike
the motor skill learning approaches, our approach utilizes
visual perception as the main information source for learn-
ing object reconfiguration skills from demonstration. The
proposed visuospatial skill learning (VSL) approach uses
a simple algorithm and minimum a priori knowledge to
learn a sequence of operations from a single demonstration.
In contrast to many previous approaches, VSL leverages
simplicity, efficiency, and user-friendly human-robot inter-
action. Rather than relying on complicated models of human
actions, labeled human data, or object recognition, our ap-
proach allows the robot to learn a variety of complex tasks
effortlessly, simply by observing and reproducing the visual
relationship among objects. We demonstrate the feasibility
of the proposed approach in three real-world experiments
in which the robot learns to organize objects of different
shape and color on a tabletop workspace to accomplish a
goal configuration.



II. RELATED WORK

Visual skill learning or learning by watching is one of
the most powerful mechanisms of learning in humans. Re-
searchers have shown that even newborns can imitate simple
body movements such as facial gestures [12]. In cognitive
science, learning by watching has been investigated as a
source of higher order intelligence and fast acquisition of
knowledge [10], [13]. In the rest of this section we give
examples for visual skill learning approaches.
In [10], a robot agent watches a human teacher performing
a simple assembly task in a tabletop environment. The
motor movements of the human are classified as actions
known to the robot (e.g. pick, move, place etc.). The robot
can reproduce the sequence of actions even if the initial
configuration of the objects are changed. In their approach,
the set of actions is already known to the robot and they
use symbolic labels to reproduce the sequence of actions.
In order to detect the movement of an object, they detect
and track the demonstrator’s hand. Since they rely solely
on passive observations of a demonstration, this method
has to make use of complex computer vision techniques,
in carefully structured environments, in order to infer all
the information necessary for the task. In our method we
neither use symbolic labels nor track the tutor’s hand. Asada
et al. [14] propose a method for learning by observation
(teaching by showing) based on the demonstrator’s view
recovery and adaptive visual servoing. They believe that
coordinate transformation is a time-consuming and error-
prone method. Instead, they assume that both the robot and
the demonstrator have the same body structure. They use two
sets of stereo cameras, one for observing the robot’s motion
and the other for observing the demonstrator’s motion. The
optic-geometrical constraint, called ”epipolar constraint”, is
used to reconstruct the view of the agent, on which adaptive
visual servoing is applied to imitate the observed motion. In
our method, we use coordinate transformation.
In [15], the authors propose an approach using multiple
sensors in a kitchen environment with typical household
tasks. They focus on pick-and-place operations including
techniques for grasping. They extract finger joint movements
and hand position in 3D space from a data glove. In addi-
tion, a magnetic field-based tracking system and an active
trinocular camera head was used for object recognition using
vision approaches. The method is based on pre-trained neural
networks to detect hand configurations and to search in a
predefined symbol database. However, there was no real-
world reproduction with a robot. A similar research focuses
on extracting and classifying subtasks for grasping tasks
using visual data from demonstration, generating trajectory
and extracting subtasks [16]. They use color markers to
capture data from the tutor’s hand. In our method, we use
neither neural networks nor symbol abstraction techniques.
A visual learning by Imitation approach is presented in [11].
The authors utilize neural networks to map visual perception
to motor skills (visuo-motor) together with viewpoint trans-
formation. For gesture imitation a Bayesian formulation is

adopted. A mono camera was used in their experiments. A
method for segmenting demonstrations, recognizing repeated
skills, and generalizing complex tasks from unstructured
demonstration is presented in [7]. The authors use Beta Pro-
cess Autoregressive HMM for recognizing and generalizing.
They apply simple metrics on the captured object’s context
to distinguish between observations. They use pre-defined
coordinated frames and visual fiducial fixed on each object
for object detection. Furthermore, they clustered points in
each frame and created a DMP for each segment in the
demonstration. In our method we use captured object’s con-
text to find pick-and-place points for each operation instead
of object recognition and point clustering.Visual analysis
of demonstrations and automatic policy extraction for an
assembly task is presented in [8]. To convert a demonstration
of the desired task into a string of connected events, this
approach uses a set of different techniques such as image
segmentation, clustering, object recognition, object tracking,
structure recognition, symbol generation, transformation of
symbolic abstraction, and trajectory generation. In our ap-
proach we do not use symbol generation techniques.
A robot goal learning approach is presented in [9] that
can ground discrete concepts from continuous perceptual
data using unsupervised learning. The authors provided the
demonstrations of five pick-and-place tasks in a tabletop
workspace by non-expert users. They utilize object detection,
segmentation, and localization methods using color markers.
During each operation, the approach detects the object that
changes most significantly. They provide the starting and
ending time of each demonstration using graphical or speech
commands. Our approach solely relies on the captured ob-
servations to learn the sequence of operations and there is
no need to perform any of those steps. In [17] a database
of features (all possible configurations of the objects) is
created and marked by supervised learning. A beta regression
classifier was used to learn the features to detect ‘good’
and ‘bad’ configurations. Since the system is relied on a
large bank of features, they discretized state space and used
methods like simulated annealing and gradient approaches to
find an optimal solution. They used a robot to demonstrate
room tidying task. our approach, on the other hand, does not
depend on a huge bank of features.

III. VISUOSPATIAL SKILL LEARNING

In this section, we introduce the visuospatial skill learning
(VSL) approach. After stating our assumptions and defining
the basic terms, we describe the problem statement and
explain the VSL algorithm.
In this paper, object reconfiguration tasks consisting of pick-
and-place actions are considered in which achieving the goal
of the task and retaining the sequence of operations are
particularly important. As can be seen in Fig. 1 the experi-
mental set-up for all the conducted experiments consists of
a torque-controlled 7-DOF Barrett WAM robotic arm with
3-finger Barrett Hand attached, a tabletop working area, a
set of objects, and a CCD camera which is mounted above
the workspace.



A tutor demonstrates a sequence of operations on the avail-
able objects. Each operation consists of one pick action
and one place action which are captured by the camera.
Afterwards, using our proposed method, and starting from a
random initial configuration of the objects, the manipulator
can perform a sequence of new operations which ultimately
results in reaching the same goal as the one demonstrated
by the tutor.

A. Terminology

To describe our learning approach accurately, we need to
define some basic terms.
World: In our method, the intersection area between the
robot’s workspace and the demonstrator’s workspace which
is observable by the camera (with a specific field of view) is
called a world. The world includes objects which are being
used during the learning task, and can be reconfigured by
the human tutor and the robot.
Frame: A bounding box which defines a cuboid in 3D or
a rectangle in 2D coordinate system. The size of the frame
can be fixed or variable. The maximum size of the frame is
equal to the size of the world.
Observation: The captured context of the world from a
predefined viewpoint and using a specific frame. Each ob-
servation is a still image which holds the content of that part
of the world which is located inside the frame.
Pre-pick observation: An observation which is captured
just before the pick action and is centered around the pick
location.
Pre-place observation: An observation which is captured
just before the place action and is centered around the place
location.
The pre-pick and pre-place terms in our approach are anal-
ogous to the precondition and postcondition terms used in
logic programming languages (e.g. Prolog).

B. Problem Statement

Formally, we define a process of visuospatial skill learning
as a tuple V = {η,W,O,F ,S} where, η defines the number
of operations which can be specified in advance or can be
detected during the demonstration phase; W ∈ <m×n is a
matrix containing the image which represents the context of
the world including the workspace and all objects; O is a set
of observation dictionaries O = {OPick,OPlace}; OPick is
an observation dictionary comprising a sequence of pre-pick
observations OPick = 〈OPick(1),OPick(2), . . . ,OPick(η)〉,
and OPlace is an observation dictionary comprising
a sequence of pre-place observations OPlace =
〈OPlace(1),OPlace(2), . . . ,OPlace(η)〉. For example,
OPick(i) represents the pre-pick observation captured
during the ith operation. F ∈ <m×n is an observation
frame which is used for recording the observations; and
S is a vector which stores scalar scores related to each
detected match during a match finding process. The score
vector is calculated using a metric by comparing the new
observations captured during the reproduction phase with
the dictionary of recorded observations in the demonstration

Fig. 2. A high-level flow diagram illustrating the demonstration and
reproduction phases in the VSL approach.

phase.
The output of the reproduction phase is the set
P = {PPick,PPlace} which contains the identified
positions for performing the pick-and-place operations by
the VSL algorithm. PPick is an ordered set of pre-pick
positions PPick = 〈PPick(1),PPick(2), . . . ,PPick(η)〉.
PPlace is an ordered set of pre-place positions
PPlace = 〈PPlace(1),PPlace(2), ...,PPlace(η)〉. For
example, PPick(i) represents the pick-position during the
ith operation.

C. Methodology

The VSL approach consists of two phases: demonstration
and reproduction. A high-level flow diagram illustrating the
VSL approach is shown in Fig. 2. In both phases, initially, the
objects are randomly placed in the world,W = {WD,WR}.
(So, VSL does not depend on initial configuration of the
objects.)WD andWR represent the world during the demon-
stration and the reproduction phases respectively.
Pseudo-code of the proposed implementation of VSL is given
in Algorithm 1. The initial step in each learning task is
calculating the (2D to 2D) coordinate transformation (line
1 in Algorithm 1) which means computing a homography
matrix, H ∈ <3×3 to transform points from the image plane
to the workspace plane (Fig. 3). In the demonstration phase,
the tutor starts to reconfigure the objects to fulfill a desired
goal which is not known to the robot. During this phase
the size of the observation frame, FD, is fixed and can
be equal or smaller than the size of the world, WD. Two
functions, RecordPrePickObs and RecordPrePlaceObs, are
developed to capture and rectify one pre-pick observation and
one pre-place observation for each operation. The captured
images are rectified using the calculated homography matrix.



Fig. 3. Coordinate transformation from the image plane to the workspace
plane (H is the homography matrix).

Using image subtraction and thresholding techniques, the
two mentioned functions (lines 3 and 4 in Algorithm 1)
extract a pick point and a place point in the captured
observations and then center the observations around the
extracted positions. The recorded sets of observations, OPick
and OPlace, form an observation dictionary which is used
as the input for the reproduction phase of VSL. Although
each capturing process, during the demonstration, is initiated
by the demonstrator, the whole procedure can be performed
automatically using some image processing techniques like
optical flow.
Before starting the reproduction phase, if the position and
orientation of the camera with respect to the robot is changed
we need to re-calculate the homography matrix for the new
configuration of the coordinate systems. The next phase,
reproduction, starts with randomizing the objects in the world
to create a new world, WR. Then the algorithm selects the
first pre-pick observation and searches for similar visual
perception in the new world to find the best match (using
the FindBestMatch function in lines 8 and 10). Although,
the FindBestMatch function can use any metric to find
the best matching observation, to be consistent, in all of
our experiments we use the same metric (see section IV-
B). This metric produces a scalar score with respect to
each comparison. If more than one match is found, the
FindBestMatch function returns the match with higher score.
After the algorithm finds the best match, the FindPickPosi-
tion function (line 9) identifies the pick position which is
located at the center of the corresponding frame, F∗. The
PickObjectFromPosition uses the result from the previous
step to pick the object from the identified position. Then,
the algorithm repeats the searching process to find the best
match with the corresponding pre-place observation (line
11). The FindPlacePosition function identifies the place
position at the center of the corresponding frame, F∗ and
the PlaceObjectToPosition function uses the result from the
previous step to place the object to the identified position.
The frame size in the reproduction phase is fixed and equal
to the size of the world (WR). One of the advantages of the
VSL approach is that it provides the exact position of the
object where the object should be picked without using any
object detection methods. The reason is, when the algorithm

Input : {η,W,F}
Output: {P}

1 Initialization: CalculateTransformation
// Part I : Demonstration

2 for i = 1 to η do
3 OPick(i) = RecordPreP ickObs(WD,FD)
4 OPlace(i) = RecordPreP laceObs(WD,FD)
5 end
// Part II : Reproduction

6 Re− calculate Transformation(if necessary)
7 for i = 1 to η do
8 F∗ = FindBestMatch(WR,OPick(i))
9 PPick(i) = FindPickPosition(F∗)

10 PickObjectFromPosition(PPick(i))
11 F∗ = FindBestMatch(WR,OPlace(i))
12 PPlace(i) = FindP lacePosition(F∗)
13 PlaceObjectToPosition(PPlace(i))
14 end

Algorithm 1: Pseudo-code for the VSL (Visuospatial
Skill Learning) approach.

is generating the observations, it centers the observation
frame around the point that the demonstrator is operating
the object.

IV. IMPLEMENTATION OF VSL

In this section we describe the steps required to implement
the VSL approach for real-world experiments.

A. Calculating Coordinate Transformation (Homography)

In each experiment the camera’s frame of reference may
vary with respect to the robot’s frame of reference. To
transform points between these coordinate systems we cal-
culate the homography. Using, at least, 4 real points on the
workspace plane and 4 corresponding points on the image
plane, the homography is calculated using singular value
decomposition. The extracted homography matrix is used not
only for coordinate transformation but also to rectify the raw
captured images from the camera. For each task the process
of extracting the homography should be repeated whenever
the camera’s frame of reference is changed with respect to
the robot’s frame of reference.
Using coordinate transformation, makes VSL approach view-
invariant. It means, after the robot acquires a new skill, it still
can reproduce the skill afterwards even if the experimental
setup is changed. It just need to use the new coordinate
transformation.

B. Image Processing

Image processing methods have been used in both demon-
stration and reproduction phases of VSL. In the demonstra-
tion phase, for each operation we capture a set of raw images
consist of pre-pick, pre-place images. Firstly, we rectify the
captured raw images using the homography matrix. Secondly
we apply image subtraction and thresholding on the couple



Fig. 4. The result of image subtracting and thresholding for a place action
(left), Match finding result between the second observation and the world
in the 2nd operation of the ‘Animal Puzzle’ task using SIFT (right).

of images to generate pre-pick and pre-place observations.
The produced observations are centered on the frame. In
the reproduction phase, for each operation we rectify the
captured world observation. Then, we load the corresponding
recorded observations from demonstration phase and apply
a metric to find the best match (the FindBestMatch function
in the Algorithm 1). Although any metric can be used in this
function (e.g. window search method), we use Scale Invariant
Feature Transform (SIFT) algorithm [18]. SIFT is one of the
most popular feature-based methods which is able to detect
and describe local features that are invariant to scaling and
rotation. Afterwards, we apply RANSAC in order to estimate
the transformation matrix from the set of matched points.
Fig. 4 shows the result of the SIFT algorithm applying to an
observation and a new world.
VSL relies on vision, which might be obstructed by other
objects, by the demonstrator’s body, or during reproduction
by the robot’s arm. Therefore, for physical implementation
of the VSL approach special care needs to be taken to avoid
such obstructions.
Finally, we should mention that the image processing part is
not the focus of this paper, and we use the SIFT-RANSAC
algorithms because of their popularity and the capability of
fast and robust match finding.

C. Trajectory Generation

We use the pick and place points extracted from the
image processing section to generate a trajectory for the
corresponding operation. For each pick-and-place operation
the desired Cartesian trajectory of the end-effector is a cyclic
movement between three key points: rest point, pick point,
and place point. Fig 5 illustrates two different views of a
generated trajectory. The robot starts from the rest point
(point no.1) and moves smoothly (along the red curve)
towards the pick point (point no.2). Then the robot picks up
an object, relocates it (along the green curve) to the place-
point (point no.3), places the object there, and finally moves
back (along the blue curve) to the rest point. For each part
of the trajectory, including the grasping and releasing parts,
we define a specific duration and initial boundary conditions
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Fig. 5. The generated trajectory for the first pick-and-place operation of the
ABCD task from two viewpoints. Point 1: rest-point, Point 2: pick-point,
and Point 3: place-point.

TABLE I
CAPABILITIES OF VSL ILLUSTRATED IN EACH TASK

Task Animal Alphabet Tower of
Puzzle Ordering Hanoi

Relative Positioning X X X
Absolute Positioning - X X
User intervention to - - Xmodify the reproduction
Multiple operations per- - - Xformed on the same object

(initial positions and velocities). We define a geometric path
in workspace which can be expressed in the parametric form
of the equations (1) to (3), where s is defined as a function of
time t, (s = s(t)), and we define the different elements of the
geometric path as px = px(s),py = py(s), and pz = pz(s).
Polynomial function of order three with initial condition of
position and velocity is used to express px, and py . Also, We
use equation (3) for pz . Distributing the time smoothly with a
3rd order polynomial starting from initial time to final time,
together with the equations (1)-(3), the generated trajectories
are suitable for obstacle avoidance while picking or placing
objects besides each others.

px = a3s
3 + a2s

2 + a1s+ a0 (1)

py = b3s
3 + b2s

2 + b1s+ b0 (2)

pz = h[1− |(tanh−1(h0(s− 0.5)))
κ|] (3)

V. EXPERIMENTAL RESULTS

To illustrate the capabilities and the limitations of our
approach, three real-world experiments are demonstrated in
this section. As summarized in Table I, the proposed ex-
periments show four different capabilities of VSL, including
absolute and relative positioning, user intervention to modify
the reproduction, and multiple operations performed on the
same object. The video accompanying this paper shows the
execution of the tasks and is available online at [19]. In all of
the experiments, in the demonstration phase, we set the size
of the frame for the pre-pick observation equal to the size
of the biggest object in the world, and the size of the frame
for the pre-place observation 2 to 3 times bigger than the
size of the biggest objects in the world. In the reproduction



phase, on the other hand, we set the size of the frame equal
to the size of the world.
The camera is mounted above the table facing the workspace.
The resolution of the captured images are 1280×960 pixels.
Although the trajectory is created in the end-effector space,
we control the robot in the joint-space based on the inverse
dynamics to avoid singularities. Also, during the reproduc-
tion phase, our controller keeps the orientation of the robot’s
hand (end-effector) perpendicular to the workspace, in order
to faciliate the pick-and-place operation.
Table II lists the execution time for different steps of the
implementation of the VSL approach.

A. Task I - Alphabet Ordering

In the first VSL task, the world includes four cubic objects
labeled with A, B, C, and D letters and a fixed right angle
baseline which is a static part of the world. The goal is to
reconfigure the set of objects with respect to the baseline
according to the demonstration. This task emphasizes VSL’s
capability of relative positioning of an object with respect to
other surrounding objects in the world (a visuospatial skill).
This inherent capability of VSL is achieved through the use
of visual observations which capture both the object of inter-
est and its surrounding objects (i.e. its context). In addition,
the baseline is provided to show the capability of absolute
positioning of the VSL approach. It shows the fact that we
can teach the robot to attain absolute positioning of objects
without defining any explicit a priori knowledge. Fig. 6(a)
shows the sequence of the operations in the demonstration
phase. Recording pre-pick and pre-place observations, the
robot learns the sequence of operations. Fig. 6(b) shows the
sequence of the operations produced by VSL starting from a
novel world (i.e. new initial configuration) which is achieved
by randomizing the objects in the world.

B. Task II - Animal Puzzle

In the previous task, duo to the absolute positioning
capability of VSL, the final configuration of the objects in
the reproduction and the demonstration phases are always
the same. In this experiment, however, the final result can
be a totally new configuration of objects by removing the
fixed baseline from the world. The goal of this experiment
is to show the VSL’s capability of relative positioning. In

TABLE II
EXECUTION TIME FOR DIFFERENT STEPS OF VSL

Steps Time (sec) For each
Homography 0.2-0.35 learning task
SIFT+RANSAC 18-26 operation (reproduction)
Image subtraction 0.09-0.11 comparison
Image thresholding 0.13-0.16 comparison
Trajectory generating 1.3-1.9 operation (reproduction)
Trajectory tracking 6.6-15 operation (reproduction)
Image rectifying 0.3-0.6 image
Demonstration 3.8-5.6 operation(calculation time)
Reproduction 27.5-44.1 operation

(a) The sequence of the operations in the demonstration phase by the tutor

(b) The sequence of the operations in the reproduction phase by the robot

Fig. 6. Alphabet ordering (Details in Section V-A). The initial configuration
of the objects in the world is different in (a) and (b). The red arrows show
the operations.

(a) The sequence of the operations in the demonstration phase by the tutor

(b) The sequence of the operations in the reproduction phase by the robot

Fig. 7. Animal puzzle (Details in Section V-B). The initial and the final
configurations of the objects in the world are different in (a) and (b). The
red arrows show the operations.

this VSL task, the world includes two sets of objects which
complete a ‘frog’ puzzle beside a ‘pond’ label together with
a ‘giraffe’ puzzle beside a ‘tree’ label. Fig. 7(a) shows the
sequence of the operations in the demonstration phase. To
show the capability of generalization, the ‘tree’ and the
‘pond’ labels are randomly replaced by the tutor before
the reproduction phase. The goal is to assemble the set of
objects for each animal with respect to the labels according
to the demonstration. Fig. 7(b) shows the sequence of the
operations reproduced by VSL.

C. Task III - Tower of Hanoi

The last experiment is the famous mathematical puzzle,
Tower of Hanoi, consisting of a number of disks of different
sizes and 3 bases or rods. The objective of the puzzle is
to move the entire stack to another rod. This experiment
demonstrates almost all capabilities of the VSL approach.
Two of these capabilities are not accompanied by the pre-
vious experiments. Firstly, our approach enables the user to
intervene to modify the reproduction. so, the robot can move
the Hanoi disks to another base. (e.g. to move the stack of
disks to the third base, instead of the second.) This goal can
be achieved only if the user performs the very first operation
in the reproduction phase and moves the smallest disk on the
third base instead of the second.



Fig. 8. The sequence of the reproduction for the Tower of Hanoi experiment
to illustrate the main capabilities of VSL. (details in section V-C).

Secondly, the VSL approach enables the user to perform
multiple operations on the same object during the learning
task. As shown in Table I, this task also illustrates other
capabilities of the VSL approach including the relative and
absolute positioning. In Fig. 8 due to the lack of space we
just provided the sequence of the reproduction.

VI. DISCUSSION

In order to test the repeatability of our approach and to
identify the possible factors of failure, we used the captured
images from the real-world experiments while excluding the
robot from the loop. We kept all other parts of the loop intact
and repeated each experiment three times. The result shows
that 6 out of 45 pick-and-place operations failed. The failure
factors can be listed as: match finding error, noise in the
images, unadjusted thresholding gain, and occlusion of the
objects. Despite the fact that the algorithm is scale-invariant,
color-invariant, and view-invariant, it has some limitations.
For instance, if the tutor accidentally moves one object while
operating another, the algorithm may fail to find a pick/place
point. One possible solution is to use classification tech-
niques together with the image subtraction and thresholding
techniques to detect multi-object movements.

VII. CONCLUSION AND FUTURE WORK
We proposed a visuospatial skill learning approach that

has powerful capabilities as shown in the three presented
tasks. The method possesses the following capabilities:
relative and absolute positioning, user intervention to modify
the reproduction, and multiple operations performed on the
same object. These characteristics make VSL a suitable
choice for goal-based object reconfiguration tasks which
rely on visual perception. Moreover, our approach is suitable
for the vision-based robotic platforms which are designed
to perform a variety of repetitive production tasks (e.g.
Baxter). The reason is that applying VSL to such robots,
requires no complex programming skill or costly integration.
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