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Abstract—This paper proposes a novel interactive robot learn-
ing approach for acquiring visuospatial skills. It allows a robot
to acquire new capabilities by observing a demonstration while
interacting with a human caregiver. Most existing learning from
demonstration approaches focus on the trajectories, whereas in
our approach the focus is placed on achieving a desired goal
configuration of objects relative to one another. Our approach is
based on visual perception which captures the object’s context
for each demonstrated action. The context embodies implicitly
the visuospatial representation including the relative positioning
of the object with respect to multiple other objects simultaneously.
The proposed approach is capable of learning and generalizing
different skills such as object reconfiguration, classification, and
turn-taking interaction. The robot learns to achieve the goal
from a single demonstration while requiring minimum a priori
knowledge about the environment. We illustrate the capabilities
of our approach using four real world experiments with a Barrett
WAM robot.

I. INTRODUCTION

Several robot skill learning approaches based on human
demonstrations have been proposed during the past decade.
Motor skill learning approaches can be categorized in two
main subsets: trajectory-based and goal-based approaches.
Trajectory-based approaches put the focus on recording and
re-generating trajectories and forces for object manipulation
[1], [2]. However, in many cases, it is not the trajectory that
is important but the goal of the action, for example, solving
a jigsaw puzzle [3] or assembling an electric circuit board. In
such examples, trajectory-based approaches actually increase
the complexity of the learning process unnecessarily.

Several goal-based approaches such as [4] have been developed
to address this issue. For instance, there is a large body
of literature on grammars from the linguistic and computer
science communities, with a number of applications related
to robotics [5], [6]. Other symbolic learning approaches are
focused on goal configurations rather than action execution [7].
Such approaches inherently comprise many steps, for instance,
segmentation, clustering, object recognition, structure recog-
nition, symbol generation, syntactic task modeling, motion
grammar and rule generation, etc. Another drawback of such
approaches is that they require a significant amount of a priori
knowledge to be manually engineered into the system.
Furthermore, most above-mentioned approaches assume the
availability of the information on the internal state of a demon-
strator such as joint angles, while humans usually cannot
directly access to imitate the observed behavior.

An alternative to motor skill learning approaches are visual
skill learning approaches [8], [9]. These approaches are based
on observing the human demonstration and using human-like
visuospatial skills to replicate the task [10]. Visuospatial skill

is the capability to visually perceive the spatial relationship
between objects.

In this paper, we propose a novel visuospatial skill learning
approach for interactive robot learning tasks. Unlike the motor
skill learning approaches, our approach utilizes visual percep-
tion as the main information source for learning new skills
from demonstration. The proposed visuospatial skill learning
(VSL) approach uses a simple algorithm and minimum a priori
knowledge to learn a sequence of operations from a single
demonstration. In contrast to many previous approaches, VSL
leverages simplicity, efficiency, and user-friendly human-robot
interaction. Rather than relying on complicated models of
human actions, labeled human data, or object recognition, our
approach allows the robot to learn a variety of complex tasks
effortlessly, simply by observing and reproducing the visual
relationship among objects. We demonstrate the feasibility of
the proposed approach in four real world experiments in which
the robot learns to organize objects of different shape and color
on a tabletop workspace to accomplish a goal configuration. In
the real world experiments, the robot acquires and reproduces
three main capabilities: object reconfiguration; classification;
and turn-taking. This work is an extension of our previous
research on visuospatial skill learning [11], with two major
novelties: (i) ability to learn and reproduce not only the
position but also the orientation of objects; and (i) application
to more challenging tasks including object classification and
human-robot turn-taking.

II. RELATED WORK

Visual skill learning or learning by watching is one of the
most powerful mechanisms of learning in humans. Researchers
have shown that even newborns can imitate simple body
movements such as facial gestures [12]. In cognitive science,
learning by watching has been investigated as a source of
higher order intelligence and fast acquisition of knowledge [8],
[13]. In the rest of this section we give examples for visual
skill learning approaches.

In [8], a robot agent watches a human teacher performing a
simple assembly task in a tabletop environment. The motor
movements of the human are classified as actions known to
the robot (pick, move, place etc.). The robot can reproduce
the sequence of actions even if the initial configuration of the
objects are changed. In their approach, the set of actions is
already known to the robot. And they use symbolic labels
to reproduce the sequence of actions. In order to detect the
movement of an object, they detect and track the demon-
strator’s hand. Since they rely solely on passive observations
of a teacher demonstration, this method has to make use of
complex computer vision techniques, in carefully structured



environments, in order to infer all the information necessary
for the task. In our method we do not use symbolic labels.
Asada et al. [14] propose a method for learning by observation
(teaching by showing) based on the demonstrator’s view recov-
ery and adaptive visual servoing. They believe that coordinate
transformation is a time-consuming and error-prone method.
Instead, they assume that both the robot and the demonstrator
have the same body structure. They use two sets of stereo
cameras, one for observing the robot’s motion and the other for
observing the demonstrator’s motion. The optic-geometrical
constraint, called “epipolar constraint”, is used to reconstruct
the view of the agent, on which adaptive visual servoing is
applied to imitate the observed motion. In our method, we use
coordinate transformation.

In [15], the authors propose a learning from observation system
using multiple sensors in a kitchen environment with typical
household tasks. They focus on pick-and-place operations
including techniques for grasping. A data glove, a magnetic
field based tracking system and an active trinocular camera
head is used in their experiment. Object recognition is done
using fast view-based vision approaches. Also, they extract
finger joint movements and hand position in 3D space from
the data glove. The method is based on pre-trained neural
networks to detect hand configurations and to search in a
predefined symbol database. However, there was no real world
reproduction with a robot. A similar research focuses on ex-
tracting and classifying subtasks for grasping tasks using visual
data from demonstration, generating trajectory and extracting
subtasks [16]. They use color markers to capture data from
the caregiver’s hand. In our method, we use neither neural
networks nor symbol abstraction techniques.

A visual learning by Imitation approach is presented in [9].
The authors utilize neural networks to map visual perception to
motor skills (visuo-motor) together with viewpoint transforma-
tion. For gesture imitation a Bayesian formulation is adopted.
They used a single camera in their experiments. A method for
segmenting demonstrations, recognizing repeated skills, and
generalizing complex tasks from unstructured demonstration is
presented in [5]. The authors use Beta Process Autoregressive
HMM for recognizing and generalizing. They apply simple
metrics on the captured object’s context to distinguish between
observations instead. For object detection they use pre-defined
coordinated frames and visual fiducial fixed on each object.
Furthermore, they clustered points in each frame and for
each segment in the demonstration a DMP is created. In our
method we use captured object’s context to find pick and
place points for each operation instead of object recognition
and point clustering.Visual analysis of demonstrations and
automatic policy extraction for an assembly task is presented
in [6]. To convert a demonstration of the desired task into
a string of connected events, this approach uses a set of
different techniques such as image segmentation, clustering,
object recognition, object tracking, structure recognition, sym-
bol generation, transformation of symbolic abstraction, and
trajectory generation. In our approach we do not use symbol
generation techniques.

A robot goal learning approach is presented in [7] that can
ground discrete concepts from continuous perceptual data
using unsupervised learning. The authors provided the demon-
strations of five pick-and-place tasks in a tabletop workspace
by non-expert users. They utilize object detection, segmen-
tation, and localization methods using color markers. During
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Fig. 1. The experimental setup for a visuospatial skill learning (VSL) task.

each operation, the approach detects the object that changes
most significantly. They provide the starting and ending time of
each demonstration using graphical or speech commands. Our
approach solely relies on the captured observations to learn the
sequence of operations and there is no need to perform any of
those steps.

III. VISUOSPATIAL SKILL LEARNING

In this section, we introduce the visuospatial skill learning

(VSL) approach. After stating our assumptions and defining
the basic terms, we describe the problem statement and explain
the VSL algorithm.
As can be seen in Fig. 1 the experimental set-up for all
the conducted experiments consists of a torque-controlled 7-
DOF Barrett WAM robotic arm with 3-finger Barrett Hand
attached, a tabletop working area, a set of objects, and a CCD
camera which is mounted above the workspace (not necessarily
perpendicular to the workspace).

A human caregiver demonstrates a sequence of operations
on the available objects. Each operation consists of one pick
action and one place action which are captured by the camera.
Afterwards, using our proposed method, and starting from
a random initial configuration of the objects, the robot can
perform a sequence of new operations which ultimately results
in reaching the same goal as the one demonstrated by the
caregiver.

A. Terminology

First, we need to define some basic terms to describe our
learning approach accurately.
World: In our method, the intersection area between the robot’s
workspace and the caregiver’s workspace which is observable
by the camera (with a specific field of view) is called a world.
The world includes objects which are being used during the
learning task, and can be reconfigured by the human caregiver
and the robot.
Frame: A bounding box which defines a cuboid in 3D or a
rectangle in 2D coordinate system. The size of the frame can
be fixed or variable. The maximum size of the frame is equal
to the size of the world.
Observation: The captured context of the world from a prede-
fined viewpoint and using a specific frame. Each observation
is a still image which holds the content of that part of the



world which is located inside the frame.

Pre-pick observation: An observation which is captured just
before the pick action and is centered around the pick location.
Pre-place observation: An observation which is captured just
before the place action and is centered around the place
location.

The pre-pick and pre-place terms in our approach are analo-
gous to the precondition and postcondition terms used in logic
programming languages (e.g. Prolog).

B. Problem Statement

Formally, we define a process of visuospatial skill learning
as a tuple V = {9, W, O, F,S} where, n defines the number
of operations which can be specified in advance or can be
detected during the demonstration phase; W € R™*" is a
matrix containing the image which represents the context of
the world including the workspace and all objects; O is a set
of observation dictionaries O = {Opjck, Oprace 3 Opick 18
an observation dictionary comprising a sequence of pre-pick

observations Opict, = (Opick(1), Opick(2), ..., Opick(n)),
and Opieee 1S an observation dlctlonary comprising
a sequence of pre-place observations Opjgce =
(Opiace(1); Opiace(2)y - -+ s Opiace(n)). For example,

Opicr(i) represents the pre-pick observation captured
during the i*" operation. F € R™*™ is an observation frame
which is used for recording the observations; and S is a
vector which stores scalar scores related to each detected
match during a match finding process. The score vector is
calculated using a metric by comparing the new observations
captured during the reproduction phase with the dictionary of
recorded observations in the demonstration phase.
The output of the reproduction phase are the set
{Ppick, Priace} and the set § = {0pick,Opiace}
which contain the identified positions and orientations
for performing the pick-and-place operations by the VSL

algorithm.
Ppick, is an ordered set of pre-pick positions
Prick = (Ppick(1), Prick(2), - - -, Prick(n)).  Priace

is an ordered set of pre-place positions Ppigee =
<PPlace(1);PPlace(2)7 ~-~7PPlace(n)>~ GPick: is an ordered set
of pick rotations Op;ck = (Opick(1),0pick(2),...,0pick(n))
and Opjce is an ordered set of place orientations
Opiace = (OPiace(1), Opiace(2), .-, OPrace(n))-

For example, Pp;.x(i) and and Op;., (i) represent the pick-
position and the pick orientation during the ‘" operation
respectively.

C. Methodology

A high-level flow diagram illustrating the VSL approach is
shown in Fig. 2. Pseudo-code of the proposed implementation
is given in Algorithm 1.

The VSL approach consists of two phases: demonstration
and reproduction. In both phases, initially, the objects are
randomly placed in the world, W = {Wp, Wg}. (So, VSL
does not depend on initial configuration of the objects.) Wp
and Wk, represent the world during the demonstration and the
reproduction phases respectively.

The initial step in each learning task is calculating the (2D to
2D) coordinate transformation (line 1 in Algorithm 1) which
means computing a homography matrix for the current set-up

]

Demonstration
I\J
O
o
w
m
o
<
O
:’
o
=]

]

Reproduction

Fig. 2. A high-level flow diagram illustrating the demonstration and
reproduction phases in the VSL approach.
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Fig. 3. Coordinate transformation from the image plane to the workspace
plane (H represents the homography matrix).

of the robot and the camera, H € R3*3. This transformation
matrix is used to transform points from the image plane to
the workspace plane (Fig. 3). In the demonstration phase, the
caregiver starts to reconfigure the objects to fulfill a desired
goal which is not known to the robot. During this phase the
size of the observation frame, Fp, is fixed and can be equal
or smaller than the size of the world, Wp. Two functions,
RecordPrePickObs and RecordPrePlaceObs, are developed to
capture and rectify one pre-pick observation and one pre-
place observation for each operation. The captured images are
rectified using the calculated homography matrix H. Using
image subtraction and thresholding techniques, the two men-
tioned functions (lines 3 and 4 in Algorithm 1) extract a pick
point and a place point in the captured observations and then
center the observations around the extracted positions. These
functions also extract the initial pick and place orientations of
the objects in the world. The recorded sets of observations,
Opick and Opjace, together with the extracted orientations,
form an observation dictionary which is used as the input for
the reproduction phase of VSL.

Before starting the reproduction phase, if the position and



Input : {n, W, F}
Output: {P,0}

1 Initialization: CalculateTransformation
// Part I Demonstration
for ; =1ton do

Opick(i) = RecordPrePickObs(Wp, Fp)

Opiace(t) = RecordPrePlaceObs(Wp, Fp)
end
// Part II
6 Re — calculate Trans formation(if necessary)
7 for i =1ton do
8 F* = FindBestM atch(Wgr, Opici (1))
9 Ppick(i) = FindPickPosition(F™*)
10 Opick (1) = FindPickRotation(F*)
11 PickObject From(Ppick (i), 0pick(t))
12 F* = FindBestMatch(Wg, Opiace(i))
13 Ppiace(i) = FindPlacePosition(F*)
14 Opiace(i) = FindPlaceRotation(F™*)
15 PlaceObjectTo(Ppiace(t), 0piace(i))
16 end

wm oA W N

Reproduction

Algorithm 1: Pseudo-code for the VSL (Visuospatial
Skill Learning) approach.

orientation of the camera with respect to the robot is changed
we need to re-calculate the homography matrix for the new
configuration of the coordinate systems (lines 6 in Algo-
rithm 1). The next phase, reproduction, starts with randomizing
the objects in the world to create a new world, WWg. Then the
algorithm selects the first pre-pick observation and searches
for similar visual perception in the new world to find the best
match (using the FindBestMatch function in lines 8 and 12).
Although, the FindBestMatch function can use any metric to
find the best matching observation, to be consistent, in all of
our experiments we use the same metric (see section IV-B).
This metric produces a scalar score with respect to each
comparison. If more than one matching object is found, the
FindBestMatch function returns the match with higher score.
After the algorithm finds the best match, the FindPickPosition
and FindPickRotation functions (line 9, 10) identify the pick
position and rotation which the position is located at the
center of the corresponding frame, F*. The PickObjectFrom
uses the results from the previous step to pick the object
from the identified position. Then, the algorithm repeats the
searching process to find the best match with the corresponding
pre-place observation (line 12). The FindPlacePosition and
FindPlaceRotation functions identify the place position and
rotation at the center of the corresponding frame, F* and the
PlaceObjectTo function uses the results from the previous step
to place the object to the identified position. The frame size
in the reproduction phase is fixed and equal to the size of the
world (Wg). One of the advantages of the VSL approach is
that it provides the exact position of the object where the object
should be picked without using any a priori knowledge about
the object. The reason is, when the algorithm is generating the
observations, it centers the observation frame around the point
that the caregiver is operating the object.

IV. IMPLEMENTATION OF VSL

In this section we describe the steps required to implement
the VSL approach for real world experiments.

A. Calculating Coordinate Transformation (Homography)

In each experiment the camera’s frame of reference may

vary with respect to the robot’s frame of reference. To trans-
form points between these coordinate systems we calculate the
homography H. Using, at least, 4 real points on the workspace
plane and 4 corresponding points on the image plane, the
homography is calculated using Singular Value Decomposition
(SVD) method [17]. The extracted homography matrix is used
not only for coordinate transformation but also to rectify
the raw captured images from the camera. For each task
the process of extracting the homography should be repeated
whenever the camera’s frame of reference is changed with
respect to the robot’s frame of reference.
After the robot acquires a new skill, it still can reproduce the
skill afterwards even if the experimental set-up is changed. The
algorithm just needs to use the new coordinate transformation.
It means that VSL is a view-invariant approach.

B. Image Processing

Image processing methods have been used in both demon-
stration and reproduction phases of VSL. In the demonstration
phase, for each operation the algorithm captures a set of
raw images consist of pre-pick, pre-place images. Firstly, the
captured raw images are rectified using the homography matrix
‘H. Secondly image subtraction and thresholding techniques
are applied on the couple of images to generate pre-pick
and pre-place observations. The produced observations are
centered around the frame. In the reproduction phase, for
each operation the algorithm rectifies the captured world
observation. Then, the corresponding recorded observations
are loaded from the demonstration phase and a metric is
applied to find the best match (the FindBestMatch function
in the Algorithm 1). Although any metric can be used in
this function (e.g. window search method), we use Scale
Invariant Feature Transform (SIFT) algorithm [18]. SIFT is
one of the most popular feature-based methods which is able
to detect and describe local features that are invariant to
scaling and rotation. Afterwards, we apply RANSAC in order
to estimate the transformation matrix H; ¢ from the set of the
matches. Since the calculated transformation matrix Hg;¢; has
8 degrees of freedom, with 9 elements in the matrix, to have a
unique normalized representation we pre-multiply H,;; with
a normalization constant:

o sign(Hsife(3,3)) 0

\/(Hsift(Bv 1)2 + Hsift(Ba 2)2 + Hsift(ga 3)2)

This normalization constant is selected to make the decom-
posed projective matrix have a vanishing line vector of unit
magnitude and that avoids unnatural interpolation results. The
normalized matrix oM, can be decomposed into simple
transformation elements,

oOHsirt = TRoR_$SyRyP 2)

where R 14 are rotation matrices to align the axis for horizontal
and vertical scaling of S,; Ry is another rotation matrix to
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Fig. 4. The result of the image subtracting and thresholding for a place action
(right), Match finding result between the 4th observation and the world in the
4th operation of the Domino task using SIFT (left).

orientate the shape into its final orientation; 7 is a translation
matrix; and lastly P is a pure projective matrix:

1 0 0
P = 0 1 0 (3)
047'[(3’1) O/H(g’z) O/H(g’g,)

An affine matrix H 4 is the remainder of a# by extracting P;
Ha = aHP~L T is extracted by taking the 3rd column of
H and A, which is a 2 x 2 matrix, is the remainder of H 4.
A can be further decomposed using SVD.

A=UDVT 4)

where D is a diagonal matrix, and U and V are orthogonal
matrices. Finally we can calculate

D 0 uvt o vt o0
Sv|:0 1:|7R0|: 0 1:|7’R'¢|:0 1:| (5)

Ry is calculated for both pick and place operations
(ngk,Rglace) so, the pick and place rotation angles of the
objects are extracted,

Opick = arctan(RY*(2,2) /RE*(2,1)) (6)
Oplace = arctan(RY“(2,2) /RE(2,1)) (7

Note that projective transformation is position-dependent com-
pared to the position-independent affine transformation. More
details about homography estimation and decomposition can
be found in [19].

VSL relies on vision, which might be obstructed by other
objects, by the caregiver’s body, or during the reproduction
by the robot’s arm. Therefore, for physical implementation of
the VSL approach special care needs to be taken to avoid such
obstructions.

Finally, we should mention that the image processing part is
not the focus of this paper, and we use the SIFT-RANSAC
algorithms because of their popularity and the capability of
fast and robust match finding. Fig. 4 shows the result of the
SIFT algorithm applying to an observation and a new world.

C. Trajectory Generation

The pick and place points together with the pick and
place rotation angles extracted from the image processing

section are used to generate a trajectory for the correspond-
ing operation. For each pick-and-place operation the desired
Cartesian trajectory of the end-effector is a cyclic movement
between three key points: rest point, pick point, and place
point. Fig 5(a) illustrates two different views of a generated
trajectory. Also, four different profiles of rotation angle are
depicted in Fig 5(b). The robot starts from the rest point while
the rotation angle is equal to zero (point no.l) and moves
smoothly (along the red curve) towards the pick point (point
no.2). During this movement the robot’s hand rotates to reach
the pick rotation angle according to the rotation angle profile.
Then the robot picks up an object, relocates it (along the
green curve) to the place-point (point no.3), while the hand
is rotating to meet the place rotation angle. Next, the robot
places the object in the place point, and finally moves back
(along the blue curve) to the rest point. For each part of
the trajectory, including the grasping and the releasing parts,
we define a specific duration and initial boundary conditions
(initial positions and velocities). In addition, we assumed that
the initial and final rotation angles to be zero. We defined a
geometric path in workspace which can be expressed in the
parametric form of the equations (1) to (3), where s is defined
as a function of time ¢, (s = s(t)), and we define the different
elements of the geometric path as p, = p.(s),py, = py(s),
and p, = p.(s). Polynomial function of order three with
initial condition of position and velocity is used for p,, and
py. Also, We used equation (3) for p.. Distributing the time
smoothly with a 3rd order polynomial starting from initial time
to final time, together with the above mentioned equations, the
generated trajectories reduce the probability of the collision
of the moving object with the adjacent objects. In order to
generate the rotation angle trajectory for the robot’s hand the
trapezoidal profile is used together with the extracted 6., and
Opiace from the equations (6) and (7).

P = a353 + a252 +a1s+ ag (8)
py = b3s® + bas® + bys + by ©)
p> = h[1 — |(tanh ™ (ho(s — 0.5)))"] (10)

V. EXPERIMENTAL RESULTS

In this section we demonstrate four experiments to illustrate
the capabilities and the limitations of our approach. We show
five different capabilities of VSL, which are summarized
in Table I, including absolute and relative positioning, user
intervention to modify the reproduction, classification, and
turn-taking interaction. The video accompanying this paper
shows the execution of the tasks and is available online at [20].
In all the real-world experiments the demonstration, learning,
and reproduction phases are performed online, but during
the demonstration phase the caregiver should take special
care to avoid obstruction. In all of the experiments, in the
demonstration phase, we set the size of the frame for the pre-
pick observation equal to the size of the biggest object in the
world, and the size of the frame for the pre-place observation
2 to 3 times bigger than the size of the biggest objects in the
world. In the reproduction phase, on the other hand, we set
the size of the frame equal to the size of the world.

The camera is mounted above the table and looks down on
the workspace. The resolution of the captured images are
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Fig. 5. (a) The generated trajectory for the first pick-and-place operation of
the alphabet ordering task from two viewpoints. Point 1: rest-point, Point 2:
pick-point, and Point 3: place-point. (b) Four generated profiles of rotation
angle for the robot’s hand used in different tasks.

TABLE . CAPABILITIES OF VSL ILLUSTRATED IN EACH TASK
¢
- w2

= o |2 2% 2|¢g
= E XN|E S|E B|E
< =} = — = = S o
Capability = < &|l< O|< =Z|A
Relative Positioning v v - v
Absolute Positioning - v - -

Classification - - v
Turn-taking - - v v
User intervention to . ) v v

modify the reproduction

1280 x 960 pixels.

Although the trajectory is created in the end-effector space,
we control the robot in the joint space based on the inverse
dynamics to avoid singularities. Also, during the reproduction
phase, our controller keeps the spatial orientation of the robot’s
hand (end-effector) perpendicular to the workspace, in order to
facilitate the pick-and-place operation. The robot’s hand still
can rotate parallel to the workspace plane for grasping the
objects from different angles.

Table II lists the execution time for different steps of the
implementation of the VSL approach.

A. Alphabet Ordering

In this VSL task, the world includes four cubic objects
with A, B, C, and D labels in addition to a fixed right angle
baseline which is a static part of the world. The goal is
to assemble the set of objects with respect to the baseline
according to the demonstration. This task emphasizes VSL’s
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(b) The sequence of the operations by the robot

Fig. 6. Alphabet ordering (Details in Section V-A). The initial configuration
of the objects in the world is different in (a) and (b). The red arrows show
the operations.

capability of relative positioning of an object with respect
to other surrounding objects in the world (a visuospatial
skill). This inherent capability of VSL is achieved through
the use of visual observations which capture both the object
of interest and its surrounding objects (i.e. its context). In
addition, the baseline is provided to show the capability of
absolute positioning of the VSL approach. It shows the fact
that we can teach the robot to attain absolute positioning
of objects without defining any explicit a priori knowledge.
Fig. 6(a) shows the sequence of operations in the demonstra-
tion phase. Recording pre-pick and pre-place observations, the
robot learns the sequence of operations. Fig. 6(b) shows the
sequence of operations reproduced by VSL on a novel world
which is achieved by randomizing the objects in the world.

B. Animal Puzzle

In the previous task, duo to the absolute positioning
capability of VSL, the final configuration of the objects in
the reproduction and the demonstration phases are always the
same. In this experiment, however, the final result can be a
entirely new configuration of objects by removing the fixed
baseline from the world. The goal of this experiment is to
show the VSL’s capability of relative positioning. In this VSL
task, the world includes two sets of objects which complete
a ‘frog’ puzzle beside a ‘pond’ label together with a ‘giraffe’
puzzle beside a ‘tree’ label. Fig. 7(a) shows the sequence of
operations in the demonstration phase. To show the capability
of generalization, the ‘tree’ and the ‘pond’ are randomly
replaced by the caregiver before the reproduction phase. The
goal is to assemble the set of objects for each animal with

TABLE II. EXECUTION TIME FOR DIFFERENT STEPS OF VSL
Steps Time (sec) | For each
Homography 0.2-0.35 learning task
SIFT+RANSAC 18-26 operation (reproduction)
Image subtraction 0.09-0.11 comparison
Image thresholding 0.13-0.16 | comparison
Trajectory generation 1.3-1.9 operation (reproduction)
Trajectory tracking 6.6-15 operation (reproduction)
Image rectification 0.3-0.6 image
Demonstration .
(calculation time) 3.8-5.6 operation
Reproduction 27.5-441 operation




(b) The sequence of the operations by the robot

Fig. 7. Animal puzzle (Details in Section V-B). The initial and final
configurations of the objects in the world are different in (a) and (b). The
red arrows show the operations.

respect to the labels according to the demonstration. Fig. 7(b)
shows the sequence of operations reproduced by VSL. This is
one of the explicit merits of this approach that without any
changes in the implementation it can deal with two different
tasks.

C. Animals vs. Machines: A Classification Task

In this interactive task we demonstrate the VSL capability
of classification of objects. We provided the robot with four
objects, two ‘animals’ and two ‘machines’. Also, two labeled
bins are used in this experiment for classifying the objects.
Similar to previous tasks, the objects, labels and bins are not
known to the robot initially. In this task, firstly, all the objects
are randomly placed in the world. The caregiver randomly
picks objects one by one and places them in the corresponding
bins. In the reproduction phase, the caregiver places one of
the objects each time in a different sequence with respect
to the demonstration. This is an interactive task between the
human and the robot. The human caregiver can modify the
sequence of operations in the reproduction phase by presenting
the objects to the robot in a different sequence with respect to
the demonstration.

To achieve the mentioned capabilities the algorithm is modified
so that the robot doesn’t follow the operations sequentially but
searches in the pre-pick observation dictionary to find the best
matching pre-pick observation. Then it uses the selected pre-
pick observation for the reproduction phase as before.

Fig. 8-1 and Fig. 8-2 show one operation during the demon-
stration phase in which the caregiver is classifying an object
as an ‘Animal’. To show that the VSL approach is rotation-
invariant, in the reproduction phase the caregiver places each
object in a different place with a different rotation. Fig. 8-3
and Fig. 8-4 show two reproduced operations by VSL.

D. Domino: A Turn-taking Task

The goal of this experiment is to show that VSL can deal
with the tasks including the cognitive behaviour of turn-taking.
In this VSL task, the world includes a set of objects all of
which are rectangular tiles divided into two square ends and
each end is labeled with a half object. (Due to lack of space
in the workspace, one of the domino objects is cut in half).
In this task first the caregiver demonstrates all the operations.
The 3rd and 5th operations during the demonstration phase

1< I Machines

Agpiimals

Fig. 8. Classifying of one object by the caregiver in the third task is shown
in subfigures 1 and 2. Two sets of match detection results in the reproduction
phase are shown in subfigures 3 and 4. The red and green crosses on the
objects and on the bins, show the detected positions for pick and place actions
respectively. (details in section V-C).

are shown in Fig. 9-1 and Fig. 9-2. In the reproduction phase,
the caregiver starts the game by placing the first object (or
another) in a random place. The robot then takes the turn and
finds and places the next matching domino piece. In this task
we use the modified algorithm from the previous task. The
human caregiver can also modify the sequence of operations
in the reproduction phase by presenting the objects to the robot
in a different sequence with respect to the demonstration.
Fig. 9-3 and Fig. 9-4 show the match finding result by the VSL
and the final reproduced operation by the robot respectively.

VI. DISCUSSION

In order to test the repeatability of our approach and to
identify the possible factors of failure, we used the captured
images from the real world experiments while excluding the
robot from the loop. We kept all other parts of the loop
intact and repeated each experiment three times. The result
shows that 2 out of 48 pick-and-place operations failed. The
main failure factor is the match finding error which can be
resolved by adjusting the parameters of SIFT-RANSAC or
using alternative match finding algorithms. The noise in the
images and the occlusion of the objects can be listed as
two other potential factors of failure. Despite the fact that
our algorithm is scale-invariant, color-invariant, and view-
invariant, it has some limitations. For instance, if the caregiver
accidentally moves one object while operating another, the
algorithm may fail to find a pick/place position. One possible
solution is to combine classification techniques together with



Fig. 9.

Two operations during the demonstration phase by the caregiver in
the domino task are shown in subfigures 1 and 2. Match detection result and
the reproduced operation by the robot in the reproduction phase are shown in
subfigures 3 and 4. The red cross on the object shows the detected positions
for pick action by VSL. (details in section V-D).

the image subtraction and thresholding techniques to detect
multi-object movements.

VII.

We proposed a visuospatial skill learning approach that

has powerful capabilities as shown in the four real world
experiments. The method possesses the following capabilities:
relative and absolute positioning, user intervention to modify
the reproduction, classification and turn-taking. These charac-
teristics make VSL approach a suitable choice for interactive
robot learning tasks which rely on visual perception. Moreover,
our approach is convenient for the vision-based robotic plat-
forms which are designed to perform a variety of repetitive and
interactive production tasks (e.g. Baxter). Because applying
our approach to such robots, requires no complex programming
or costly integration.
Further perspectives include using a camera (e.g. Kinect or
a stereo camera) which is robust to changes in illumination
conditions and can provide depth information to perform
assembly tasks along z-axis as well (e.g. stacking objects
on top of each other). Finally, in our future work, we aim
to improve the grasping technique for objects with different
size and material. However, in this paper we applied a simple
grasping method by measuring the closing torque of the Barrett
Hand.

CONCLUSION AND FUTURE WORK
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