INFRAWEBS
B
a “

! ’ information Society
Y Technosogics

FP6-511723
INFRAWEBS

Intelligent Framework for Generating Open (Adaptable)
Development Platforms for Web-Service Enabled Applications Using
Semantic Web Technologies, Distributed Decision Support Units
and Multi-Agent Systems

Specific Targeted Research Project
Priority 2 “Information Society Technologies”

INFRAWEBS Axiom Editor User’s Guide
Version 1.0.5

Gennady Agre
Petar Kormushev
Ivan Dilov

INFRAWEBS « 511723 « User’s Guide « Version X, dated dd/mm/yyy * Page 1 of 44

TABLE OF CONTENTS

L INTRODUCTION ...ttt e e e e e et e e e s e e e s e e e e e e e e e e e e e e e s s s s s s s
2 THE WORKSPACE ELEMENTS ...ccieitttiaaatteeeaaautneaeaausseeesaasseassssnseessanssessaanseessssneess
2.1 0NL0IOGY VIBW... .o e
2.2 DIAGAIM ATC8.....ciie ittt e ettt e e e e e e e e e s e n e e e e e e e annneees
2.3 PrOPEITIES VIBW. .. oo iii ittt et e aeaeaaas
2.4 OULNE VIBW....ccc ittt e e e e e e e e e e e e e e e e aaaaaas
2.5 Thumbnail + ZOOM CONTIOISuuviiiiiiiiiiiiiieeiiee e
2.6 TEXE VIBW ...ttt ettt e e
2.7 The MaAIN MENU....ccciiiiii e et e e e e e e aaaaaaaaaaaaaaaas
3 AN INFORMAL MODEL OF THE AXIOM CONSTRUCTION PROCESSccoviuiiieeiiinnnn.
3.1 DEfiNItION SEEP oo
3.2 REfINEMENT STEP ... e e
3.3 Logical Development STEP.....cccciiiiiiiiiiriiiiit e
4 USING AXIOM EDITOR ..ccviiiiiiiiiiiiiiieiee e
4.1 Loading ONEOIOGIESueeiiiieeiiiiiiiie et e e e e e e enneene s
4.2 Imported ONtOIOGIEScceeeeeee e
4.3 ON-demand 1080INGuueiiiiiiiiiiiiii e
4.4 Menu for operations available at the axiom definition step.........c.cccceeeee..
4.5 Two modes for axiom CONSIIUCTION...........uuuuuuiiuiiiiiiiiiiieerirrrereeereereereeeeeeee
4.6 The first variable ...
4.7 Refining attributes by Selection.............cccccoiiiiiiiiiiiiiiieeeeeee e
4.8 Refining attributes by default...........cccooiiiiiiii
4.9 Refining attributes by manual CONNECHIONuvviviiiiiiiiiiiiiiiiiieieeeeeeeeee,
4.10 Multiple value attributes..............ooooiiiiii i
I R U TR = F= 1o S
4.12 Use of logical OPEratorsS.........cooeiiiiiiiiiecii et e e e eee s
4.13 Renaming Variablesooouiiiiiiiii e
4.14 Operations for editing CONNECHIONS...........coiiiiiiiiiiiiiiee e
4.15 Manipulating large axiom MOdEelS...........cccccuuururiiiiiiiiiiiiiiieireeeeeeeeeeeeeeeeee
4.16 Hiding unused attribULES...........uvviiiiieiiiiiiiiece e
4.17 Saving and Loading @XiOMScccceieiuuumniiiiiiiiirrriiriieereeeeeeeeeeeereeeereeeeeeees
4.18 Saving and Loading axioms as wsml fileS.........ccccovvvviiiiiiii
5 CONCLUSION AND FUTURE TRENDS ...ccttutttteeattreaeaasteeeessuteeasaansseesaansseasaanneeesssnsneens

INFRAWEBS « 511723 « Axiom Editor User’'s Guide * Version X, dated dd/mm/yyy * Page 2 of 44

[S = =T =5
APPENDIX A. TABLE OF OPERATIONS . .. tiutititntttttteeteeetnsttnsssssesssssssasesesesnsensesees

INFRAWEBS « 511723 « Axiom Editor User’'s Guide Version X, dated dd/mm/yyy * Page 3 of 44

1 INTRODUCTION

INFRAWEBS Axiom Editor is an ontology-driven user-friendly tool for graphical
construction of complex WSML logical expressions. This guide provides information
about how to use the tool.

It is not required to know WSML in order to use Axiom Editor as an axiom
construction tool. Therefore, this guide does not contain an introduction to neither
WSML, nor WSMO. More experienced users are advised to get familiar with the
WSML language (Web Service Modeling Language) [Roman et al., 2005], which
provides a formal syntax and semantics for the Web Service Modeling Ontology
(WSMO) [Bruijn et al. 2005].

The main objective of the INFRAWEBS Axiom Editor is to construct valid WSML
logical expressions to be used for describing a capability of WSMO-based Semantic
Web Services (SWS). Up to now all known approaches to this problem are reduced
to some (enhanced) text editors creating such logical expressions as simple strings
without any support to the process of axiom construction. Axiom Editor, on the other
hand, is an entirely graphical tool for construction. It was developed to be as much
easy to use as possible.

The INFRAWEBS Axiom Editor runs as an Eclipse plug-in. Eclipse is a free,
integrated development environment (IDE) which can host different third-party
applications, providing a unified visual outlook and better integration between them.
Some other SWS projects are also developed as Eclipse plug-ins. More information
about Eclipse can be found in [Des Rivieres and Wiegand 2004].

The INFRAWEBS Axiom Editor is bundled as a standalone application on top of the
Rich Client Platform (RCP). The RCP is a compact Eclipse core which can also host
plug-ins. It provides a startup executable which runs a lightweight version of the IDE
and automatically loads the appropriate plug-in (in this case — Axiom Editor).

The INFRAWEBS Axiom Editor is developed by the Institute of Information
Technologies — Bulgarian Academy of Sciences in the frame of FP6-511723 IST
Project INFRAWEBS.

INFRAWEBS « 511723 « Axiom Editor User’'s Guide * Version X, dated dd/mm/yyy * Page 4 of 44

2 THE WORKSPACE ELEMENTS

The screen is divided in several major areas: Ontology View, Diagram Area,
Properties View, Outline View, Thumbnail + zoom controls and Text View.

Zoom controls Diagram Area

Fle Edt Vincow Hep

-k R

o Onaoioges 51
Short example customer |iocation| 4 | i
names [oweems & Properties
View
LD Mt)
= Tree @ scomudatedioints | 2acaumisiedPoits
Q
E outline
[=]
=]
E (Eemaladdross ¢ Jemadaccress
o g-fauumer : 7!An7u::
gd’usmhddzss Pphysicaltddress
Ontology s S| 2
Properties e e iy Thumbnail
P
Cardinaity: 0-*
— 1

Text View

2.1 Ontology View

The Ontology View contains all loaded WSMO ontologies. The Ontology View is
read-only — the user cannot modify the ontologies in any way.

e At the top of the view there is a list of tabs
used to switch between different
ontologies. When several ontologies have
been loaded, the list can be scrolled
sideways using the arrows that appear to
the right. All ontologies are automatically given unique short names which are
displayed in the tabs and are used throughout the whole workspace. The short
name is based on the last part of the ontology IRI.

Ontologies X

example cuatomerl 4|k

e The center part of the Ontology View is the Ontology Tree which contains all
ontology elements, structured in a hierarchy. The nodes represent:

O concepts, 3 attributes, @ instances;
@ relations, I parameters, O relation-instances;
** non-functional properties, * namespaces;

“ imported ontologies, ¥ used mediators; # defined ontology axioms.

The user can browse the elements and select concepts, instances and relations for
the creation of axioms.

INFRAWEBS « 511723 «Axiom Editor User's Guide Version X, dated dd/mm/yyy « Page 5 of 44

The structure of the sub-tree of “# Concepts reflects:

e the hierarchy of inheritance between the concepts — sub-concepts are displayed
as children of all their super-concepts;

e the memberships of instances to their concepts — all instances of a concept are
displayed as children of that concept;

e the membership and inheritance of attributes — all attributes of a concept are
displayed as children of that concept and the icon specifies the origin of the
attribute.

There are three possible types of attributes with respect to their origin:

i new attributes — defined for the first time by the concept they are children
of;

= @inherited attributes — defined by a super concept and left unchanged in the
sub-concept;

= @ overridden attributes - defined by a super concept and changed in the sub-
concept. For example, the sub-concept may have changed the attribute range
or may have imposed additional constraints on its values.

The same holds for the sub-tree of & Relations — sub-relations, parameters and
relation instances are aligned in the same way as sub-concepts, attributes and
instances respectively.

The sub-tree called More information contains all ontology metadata and
elements which are not used for the creation of axioms. These are non-functional
properties, namespaces, imported ontologies, used mediators and axioms defined in
the ontology. Such information can only be browsed by the user to get a more
comprehensive view of the ontology.

The bottom part of the Ontology View is the Ontology Properties section. It contains
some textual details about the selected element in the Ontology Tree such as the
non-functional properties of a concept, the definition of ontology axioms etc.

The most important ontology elements in the INFRAWEBS Axiom Editor are @
concepts, @ instances and @ relations since they are the building elements of
axioms. All concepts, instances and relations can be drag-and-dropped from the
Ontology Tree into the Diagram Area thus creating axiom elements. Double-clicking
on Ontology Tree elements has the same effect as drag-and-drop operation except
that their positions in the diagram are selected at random.

2.2 Diagram Area

The Diagram Area contains the graphical representation of the axiom (axiom model).
The model is displayed as a directed acyclic graph, reflecting the tree structure of the
logical expression. The Diagram Area is a place where the user creates axiom

INFRAWEBS « 511723 «Axiom Editor User's Guide Version X, dated dd/mm/yyy « Page 6 of 44

elements from selected ontology elements and adds dependencies between them by
using semantically consistent operations.

Axiom elements are:

A trainConnection#station

& customer € customer#custome innsbruckHbf
Attributes: mnshruc)
username [string) Instance
password [string] R examplefageOfHuman Dperator
contactinformation [customerContactinformation] Parameters; ———— |
accumulatedPoints [integer] o ageCfHumant [Human] @
. 1 ageQfHuman?2 [integer]
Variable

Relation Start element

@ variables are created from ontology concepts. They are displayed as blue colored
rectangles. The word following the symbol @ is the variable name, and the word
following the symbol ““ defines the variable type. A variable may contain attributes
that are shown as: <name> [<type>], where the name and the type come from the
definition of the corresponding concept in the ontology.

If the variable has its property “Exists” set to True, then a small sign El appears
beside its @ icon, like this:

@3 Child€ example#Child
Attributes:
hasMame [name]

hasParent [Human]
ha=Child [Human]
hasAncestor [Human]
haswWeight [decimal]
hasBirthdate [date]
hasOhit [date]
hasBithplace [location]
izdarriedTo [Human]
hasCitizenship [courntry]
izdlive [hoolean]

@ Instances are created from ontology instances. They are displayed as violet
colored rectangles. There are 2 types on instances: instances of WSML build-in types
(e.g. “string”) and normal instances presented in ontologies (e.g. “Paul”).

I’ example#Paren
abc Paul

@ Relations are created from ontology relations. They are displayed as green
colored rectangles.

Logical Operators are displayed as ellipses. At present only AND, OR and NOT
are supported.

INFRAWEBS « 511723 «Axiom Editor User's Guide Version X, dated dd/mm/yyy Page 7 of 44

The start element. It is a single yellow ellipse with the word “start” in it, pointing to
the root element of the logical expression.

Dependencies between these elements are introduced through the use of
connections displayed as directed arrows. The INFRAWEBS Axiom Editor forces
many restrictions on these connections in order to preserve the semantic consistence
of the axioms. The connections are only allowed:

= from the start element to exactly one variable, instance, relation or operator. The
target is the root element of the logical expression.

= from variable attributes to variables, instances or operators. The target is the root
of a sub-expression refining the value of the attribute.

= from relation parameters to variables, instances or operators. The target is the
root of a sub-expression refining the value of the parameter.

= from operators to variables, instances, relations or operators. The connections
reflect the logical structure of the expression tree.

The axiom elements, which are not connected to the axiom tree, are shown with a
half-tone color, like this:

(7] 3
Aktribukes:
username [string]

password [string]

C:__::::D contactinformation [customerContactinformation]

accumulatedPoints [integer]

R

Parameters:
innshruckHhf ageCfHuman1 [Human]
ageCfHUman2 [integer]

Several axioms can be simultaneously opened for editing. They appear as tabs in the
Diagram Area. They all share the ontologies loaded into the Ontology View.

2.3 Properties View
The Properties View displays the properties of the selected element in the Diagram

Area. Different kinds of elements have different sets of properties — some of them
read-only, others - editable. For example, a variable has only three properties:

INFRAWEBS « 511723 «Axiom Editor User's Guide Version X, dated dd/mm/yyy « Page 8 of 44

1. Aread-only type which is the qualified name of

E Properties 22 = 0O
a concept.
E e 7
2. An “Exists” Boolean flag with values True or Property | Yalue A
False. This is used to set whether the variable Exists trus
should be included in the “Exists” clause in the Type examplea Child
axiom text or not. variable Child
3. An editable variable name which is a string
that must be:
- unique within the axiom model, and
- valid with respect to the WSML syntax for
variable names. This means it must contain ’:
only alphanumeric characters and a few other | ¢ »
characters like ‘' for example. Detailed
description of the WSML syntax can be found in [Bruijn et al. 2005].
Here are three
examp|es of fj nonamel X = O | & properties &3 = O
different property B =
views when 4 ata_r}\ Property | Walue ”~
different elements _ _/ Descripkior Auto-generated a.
from the axiom are Mame nonamel
selected: \
& station’€ trainConnection#station
Attributes:
If the “start” eone [string]
. locatedin [address]
element IS barderToZountry [korder]
selected:
W
< >
If a variable is
selected: rre — — —
yo¥ nonarmel X B] Properties 23 B
E e Y
Property | Yalue L
Exists false
Twpe trainConnections .
Variable skakion
& station® trainunnectiun#statiun
Akkribukes:
code [string] 4
locatedin [address]
harderToCauntry [border]
b
< ¥

INFRAWEBS « 511723 «Axiom Editor User's Guide * Version X, dated dd/mm/yyy Page 9 of 44

If an attribute is

selected: ¥o8 nonamel X = B || = properties 53 =7
B E Y
Property | Yalue -
Zardinality 0 - 3
Canskrainir brue
Exists False
@ station® trainConnection#station iheianes "'E'E“""
Aktribukes: Marne code
| code [string] 1 Types xMLSchemagstring
locatedin [address] Wariable
horderToCountry [border]
“
< >

The name of a variable can be easily changed by editing the “Variable” property in
Properties View or right at the variable rectangle header.

2.4 Outline View

The Outline View displays a classical tree representation of the logical expression.
The branches of the tree, at all levels, can be expanded or collapsed to help the
viewer better perceive the high-level structure of the expression. It also allows easier
navigation among the elements. If an element is selected in the Outline View, it
becomes selected in the Diagram Area as well and its properties are displayed in the
Properties View.

5= outline 22 =8
=] (start)
[AND
-] @ customer
-1-14. OR
{7 customerCont
3 paguiteContat
—-{D example#ageOfHuma
5 @ 1_Human
—I-(7) hasBirthplace
{7} longitude
{7} latitude
@ 2_integer

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy « Page 10 of 44

2.5 Thumbnail + zoom controls

The Thumbnail is a mini-map of the whole diagram. For large diagrams it helps the
user to not lose the whole picture, makes navigation easier and always highlights the
part of the diagram being displayed in the Diagram Area.

@it £ sameples hid

The Zoom Controls provide a way of getting a larger part of the diagram into view by
selecting zoom-factor less than 100%. On the contrary — if the user selects a zoom-
factor above 100% details can be clearly seen and elements can be more precisely
aligned in the Diagram Area.

File Edit Window Help
B & x
as Ontologies 2 TE}; Qéh =0

wsml-syntax example lcustomm 1| r

i@ hasBirthdate A
@ hasObit
_Tjg'. hasBirthplace
_Tjg. isMarriedTo
_Tjg. hasCitizenship
- . .
@ isAlive

@ customer € customerfcustomer
O Mary Attribntea

2.6 Text View

The Text View contains the WSML representation of the axiom. It is automatically
refreshed whenever something is changed in the diagram to reflect the current state
of the expression. It is useful for advanced users who want to know the exact impact
of their actions on the final description of the axiom.

INFRAWEBS « 511723 «Axiom Editor User’s Guide « Version X, dated dd/mm/yyy « Page 11 of 44

2.7 The main menu
The main menu contains the following top-level menu items: File, Edit, Window, Help.

The File menu contains operations to Open/Save/Close axioms created with this
editor. The user can also create new axiom with the “New Axiom” menu item:

fj INFRAWEBS Editor - Axiom Editor 1.0.5
ZIEW Edit Window Help

Open File... | oz
j Mew Axiom 5

(% open k40

Converk Line Delimiters To L
Close Chrl+F4 '
Close All Ckrl+Shift+F4

|| save Chrl+5
(5] Save as...

I

Exit

The Edit menu contains standard editing operations like Cut/Copy/Paste/Delete. It
also provides Undo/Redo functionality to the user:

fj INFRAWEBS Editor - Axiom Editor 1.0.5

File M&s(8 ‘Window Help
=] [m]
Hl inp 9
& = 5
WS of Cut Shift+Delete
=] Copy Chrl+Insert A
2 Paste Shift+Insert
3 Delete Dieleke
Select Al ChrlA

The Window menu can be used to change the Perspective or the Preferences of the
Editor. There is one pre-defined perspective called “Axiom Editor” which is the default
one.

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy Page 12 of 44

Yz# INFRAWEBS Editor - Axiom Editor 1.0.5
File Edit
||| A7 Openin Mew Window w0 oom s | Oih

I|.|'|.|I | M |:| (w0

Help

S Wagles]| Cpen Perspective

Shiaw View
wsiml-s; Cther...

’7 Preferences.., P TLart

— b

@ phone | kﬂ/
The user can choose another perspective from the “Other...” menu item with the
following perspective selection dialog:

¥-3 Select Pe rspective

'&'.ﬁ.xium Editor {default)
rﬁ_ﬁ Resource
" I Test Perspective

| Ik | Cancel

And finally, the Help menu contains the About dialog of the Axiom Editor:

%3 INFRAWEBS Editor - Axiom Editor 1.0.5
File Edit ‘Window N

H [*= | [§ (7)) Help Contents %
&s Onkologies 27 fj About Axiom Editor k :
wsml-syntax] X Key Assist, ., CtrH-Shift+L
‘ j?" Software Updates k

() [— : .

INFRAWEBS « 511723 «Axiom Editor User's Guide « Version X, dated dd/mm/yyy Page 13 of 44

3 AN INFORMAL MODEL OF THE AXIOM CONSTRUCTION PROCESS

A process of axiom creation may be considered as a repetitive process combining of
three main conceptual steps — definition, refinement (or specialization) and logical
development (or elaboration). The definition step is used for defining some general
concepts needed for describing the meaning of axioms. The refinement step is used
for more concrete specification of desired properties of such concepts. Such a step
may be seen as specialization of too general concepts introduced earlier. The logical
development step consists of elaborating logical structure of the axioms, which may
be achieved by combination of general concepts by means of logical operators AND,
OR and NOT.

Syntactic and semantic checks applied during the all phases of axiom creation
process are based on the following properties:

e Subsumption relation between different elements of ontologies: such a relation
determines compatibility between axiom variables;

e Acyclic property of the selected model (DAG) for representing an axiom;

e Uniqueness of the names of variables used for constructing an axiom (if
contrary is not explicitly specified);

e Arity of logical operators used for constructing an axiom.

3.1 Definition Step

During the definition step the nature of a main variable defining the axiom is
specified. Such a step is equivalent to creating a WSML statement ?Concept
memberOf Concept, which means that the WSML variable ?Concept copying the
structure of the Concept from a given WSML ontology is created. Attributes of the
concept, which are “inherited” by the axiom model variable, are named variable
attributes. By default the values of such attributes are set to free WSML variables
with type defined by the definition of such attributes in the corresponding ontology.

For example, let us assume that there is a concept of reservationRequest in a WSML
ontology defined as follows:

concept reservationRequest
nonFunctionalProperties
dc#description hasValue "This concept represents a
reservation request for some trip for a particular person”
endNonFunctionalProperties
reservationltem impliesType wsml#true
reservationHolder impliesType prs#person

The result of the definition step using this concept as “a template” will be creation of
the following axiom model variable (WSML logical expression):

?reservationRequest memberOf tr#freservationRequest
and reservationltem hasValue ?reservationltem
and reservationHolder hasValue ?reservationHolder
INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy « Page 14 of 44

It should be mentioned that in the definition step every concept, instance or relation
from an arbitrary WSML ontology may be used as a template for creating the
corresponding axiom variable.

3.2 Refinement Step

The refinement step is a recursive procedure of refining values of some attributes
(relation parameters) defined in previous step(s). In terms of our model each cycle in
such a step means an expansion of an existing non-terminal node — variable (or
relation). More precisely that means a selection of an attribute from a list of available
attributes of an existing axiom variable, and binding its value (which in this moment is
a free WSML variable) to another (new or existing) node of the axiom model. The
main problem is to ensure semantic correctness of the resulted (extended) logical
expression. Such correctness is achieved by applying explicit rules determining
permitted expansion of a given node.

An attribute value® of an axiom variable may be refined by binding it to:

A. A new variable produced from the ontology concept specified by ofType or
impliesType WSML statement for the corresponding attribute (default binding);

B. A new variable produced from a sub-concept of the ontology concept specified by

of Type or impliesType WSML statement for the corresponding attribute;

A new terminal node — instance produced from an instance of the corresponding

concept or of its sub-concepts;

A relation which parameters are compatible with the type of the selected attribute;

An existing axiom variable, which are compatible with the type of the selected

attribute and which does not lead to creation of cycles in the model.

A shared variable with compatible type.

A complex logical expression composed from all mentioned above items by

logical operators OR and NOT.

mo O

O

3.3 Logical Development Step

This step of the axiom construction process consists in adding logical operations
(AND, OR and NOT) to the current logical expression. Such operators may be added
to connect two independently constructed logical expressions or be inserted directly
into already constructed expressions. In both cases it leads to creating more complex
logical expressions.

A logical operator can be inserted only into a connection that has been already
created as a part of the axiom model. Such an insertion “splits” the connection on two
parts, which are linked by newly inserted logical operation. Since operators AND and
OR should have at least to operands, the addition of such logical operators requires
creating the second operand, which can be either a new or an existing axiom
element. The operation is controlled by context-dependent semantics and syntactic
checks so different logical operators can be inserted only in some allowed places in
the axiom. Such checks analyze the whole context of the axiom, which in some

! The same rules are applicable to every unbound relation parameter.
INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy Page 15 of 44

cases leads for necessity to verify the path from the edited element till the starting
axiom element — the axiom Root.

It should be underlined that during this step the user is constructing the axiom by
logical combination of main axiom objects defined in the previous steps. In other
words, the logical operators are used not for refining or clarifying the meaning of
some parameters of already defined objects, but for complicating the axiom by
specifying the logical connections between some axiom parts which are independent
in their meaning.

4 USING AXIOM EDITOR

In this section we will introduce the tasks a user can perform in Axiom Editor. After
the application has been started, the workspace is initialized with an empty axiom.
The diagram contains only the start element which is not a real element of the axiom
but only a pointer to the root of the expression which the user is going to build. The
Text View contains the declaration of an axiom with in empty definition.

Fi= Edt Wndow Help
¢ 2o o of [O a2 e @ & [=]

s Onsolngies 7 (=l B 1% rvicen - [0 TV frvorkepae MadomEritor_repyfoo_117.a0m] X

(W]

[preperties = =8

AMLSChema | wsml-syrtae @xample] o

i hasSi thdate ~
(@ hasobis
i hesSir thplacs
i MarniedTo
“i@ hastitzenshp
i Ak
0 mary
O pad
= (@ chid
i hastiame
@ hasParant
i@ haschid
i hasAnestor
i@ hasieight o= =
"l haseighirKiG o= Oulire 2
j@ hasgirthdate (atart)
(@ hasdb
3 hasirthplace
i@ isMarriedTa
" hasCitizenship
@ sl
@ Bor
=10 Relations
=@ sgefrhuman
P _Human
P 2_nb=ger
B (George, 1) [}

H ¥

Proparty I b

Selecied ilem progertes (] Asciom Text iew & O
Concept: Child A =

aniom aAoGenerabedioiom _L
nonfFunchonalProperbes
desbscripton hasVahes “Auln-generated o by Axias Editor”
endriorFunctonalPropertiss
Super onIepts; Human definadiy

Attributes: 0

WP
dearelaton =
{http: [fvewrw.example.ongfontologiesiexa
w

4.1 Loading ontologies

Ontologies are the main input for Axiom Editor. Usually the creation of an axiom

involves using concepts from several ontologies as well as extensive usage of built-in

WSML data types and predicates (XML data types are directly mapped to WSML

data types). To unify the access to concepts, relations and WSML built-in constructs,

the INFRAWEBS Axiom Editor treats the latter as regular concepts and relations.

Two pseudo-ontologies are automatically loaded upon startup — one containing the
INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy « Page 16 of 44

XML Schema data types defined at http://www.w3.0rg/2001/XMLSchema and the
second containing the rest of the constructs defined at
http://www.wsmo.org/wsml/wsml-syntax. Thus the user can use basic data types
(strings, numeric values etc.) as ordinary ontology concepts built-in predicates (such
as numeric comparisons) as ordinary ontology relations.

The user can view an additional, non-logical ontology content by expanding the
More information node at the top of the Ontology Tree and browsing the elements.
Details are displayed in the Ontology Properties section.

#h Ontologies X

= =0

#h Ontologies X

B g =0

Ontologies X

= $ =0

XMLSchema | wsmi-syntax | example | XMLSchema Wsmi-syntax | example | XMLSchema | wsmi-syntax example |
+ Mare information + Mare information A = Mare information b
—-(3) Concepts (9 Concepts —|-NEp Non-functional properties T |
@ xsd#string -1} Relations NEP dc#title
@ —-{2 wsml#numericEqual wep dc#language
& xsd#integer 7 1_dedmal NFP dc#Fcontributor
@ xsd#float p 2_decmal NFP dc#Fsubject
@ xsdzdouble =@ wemlznumericinequal NEP dc#format __
@ xsd#anyURI P 1_decimal WFP dc#description
@ xsd#sOName ¢ 2_dedmal NP wsmlEversion
(& xsd#boolean —-{2} wsml#lessThan NEp dcEdate
@ xsd#duration p 1_decmal NER dcErights
@ xsd=dateTime P 2_dedmal —|-¥F Namespaces
@ xsdztime =Dy wsmlzlessEqual 5 ¥sd
@ xsdzdate 7 1_dedimal NF dc
& xsd#g¥earMonth ¢ 2_dedmal % foaf
@ xsd#g¥ear —1-{2} wsml#greaterThan % wsml
@ xsd=gMonthDay P 1_dedmal %% loc
® xsd=gDay r NF 00
@ xsdzgMonth —-{2} wsml#greaterEqual - d& Imported ontologies
@ xsd#hexBinary 7 1_dedmal & location
(® xsd#bases4Binary p 2_decmal & 0.1
) Relations -4y wsml#stringEqual -t Used mediators
P 1_sfring & ooMediator
P 2_string -1-# Defined axioms
—-{2¢ wsml#stringInequal & IsAlive
p Lstng #
P 2_string # ManDisjointWoman
- A2 wemlznumericadd b # ChildDef b
Selected item properties Selected item properties Selected item properties
Concept: xsd#decimal ”~ Relation parameter: Axiom: FunctionalDependencyAlive A~
greaterThan.2_dedmal 3
Attributes: 0 IRI:
Types: xsd#decimal http: [fwww .example.org/ontologies /exa
NFPs: mple #FunctionalDependencyAlive
shortcutExample = {°4.27, "42.07 Constraining: true
constructor = *_decdmal” Definition: 1- IsAlive (?x , ?y1) and
usage = IsAlive (?x, ?y2)and 2y1!1="72y2. =
"_dedmal(}"-'?numeric +. numeric+\")" =

Built-in data types

Built-in relations

Additional content

In order to load an otology the user can press one of the Open buttons. The upper
one is global and is used to load any file — a previously stored *.axiom file to be
edited in the Diagram Area, a *.wsml file containing an ontology to be loaded into the
Ontology View or just a text file which will be opened for editing in a plain text editor.

The lower button is a part of the Ontology View and is intended to load ontologies
only.

INFRAWEBS « 511723 «Axiom Editor User’s Guide « Version X, dated dd/mm/yyy Page 17 of 44

File Edit W_lndou_\' Help
¥
[
= & op

XMLSchema | wsmi-syntax examnlel m
iofocmat » start

jm| '&'Ax\nm - [D:/TW fworkspace (AxiomEditor_rep/foo_117.axiom] &3

Look in: | 15 ontologies j £ EE-
‘_\5 ﬁ 050505 v0. 1 alo serviceDescription.wsml !] 050505 v0.2 alo shuttieB
L ﬂ 050505 v0. 1 alo tourismServiceProvider . vesml 2\] 050505 v0.2 alo shuttlel
My Recent ||%] 050505 v0.2 alo booking.wsml %] 050505 v0.2 alo templaty
lrzmEe ﬁ 050505 v0.2 alo carRental.wsml ﬂ axiom-editor,wsml
@ ﬂ 050505 0.2 alo carRentalBooking.wsml ﬂ dt_new.wsml
ﬂ 050505 v, 2 alo carRentalBockingWSChareography . wsml 2\] example_family wsml
= Desktop 2] 050505 v0.2 alo customer. wsml ﬁ family.wsml
. ﬁ 050505 v0.2 alo flight.wsml !] locations.wsml
‘J %] 050505 v0.2 alo fif Type: WSML File |%] metamodeling. wsml
ﬁ 050505 v0.2 alo fi Date Modified: 05,7.2005r, 19:15 ﬂ trainConnection. wsml
My Documents ﬁUEUSUEvU.laIDh Size: 2,64 KB
T QDSDSUS 0.2 alo hotelRoomBooking. wsml
i t‘g! ﬁ 050505 v, 2 alo hotelRoomBaokingWSChareography. wsml
My Compuer #] 050505 v0.2 alo SFSRecard.wsml
ﬁ 050505 v0.2 alo shutte.wsml

i ‘Q < I 3
= Iy Networkc File name ‘DSDEDE v0.2 alo customer.wsml j Open

Places
Files of type ‘Omolog\es {"wsml) ﬂ %

The user selects a wsml file. All ontologies described in that file (may be more than
one) are extracted and added to the Ontology View. If the file is not a valid WSML file
a corresponding parse error is displayed.

If an error occurs while loading the selected ontology, an appropriate error message
appears with explanation of the error. For example, if an error was reported by the
WSML parser, the following error may appear:

t‘j WSML Parse Error

an error occured during parsing File

‘TuiIWworkspacel\2a_GEMADY AxiomEditor_rcpldatalontologiesFamily wsml':
Could nat parse WSML: (Line: 336 Pas: 15 Expected:EOF
Found:"bankTransaction)capabilicy™)

If the selected WSML file does not contain any ontologies, the following warning
message appears:

¥2% Warning

File does not contain ontologies:
! D IWhworkspace\ 24 _GEMADY AxiomEditor_rcpldatallUsecase Mov
L

2005YG0alstshuttleBookingGoalTemplate., wsml

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy « Page 18 of 44

If the selected file does not contain a proper WSML format, another error message

appears:
%58 Error
@ Error loading ontologies From File

org.wsmo.wsml, ParserException

ECF

e wworkspace\28_GEMADY! AxiomEditor_rcpldatalontologiesiindes:, bxk

Message: Could not parse WSML: (Line: 1 Pos: 1 Expected:EOF Found:http)
Zause: arg.wsma.wsml.compiler . parser . ParserException: [1,1] expecting:

%]

4.2 Imported ontologies

Suppose we want to refine the physicalAddress
property of the customerContact variable. We could
first locate it in the Ontology View to examine its
details in the Ontology Properties section (using the
“Locate in Ontology” operation from the context
menu).

The type of the attribute is loc#address. The prefix
loc# means that the concept location is not defined in
the default namespace but in another namespace
whose identifier is abbreviated to the word loc.

The abbreviated identifiers are called namespace
prefixes. They can be found in the Namespaces
branch of the More information section of the
Ontology Tree. Selecting the node loc would reveal
that the full identifier of the namespace is
http://www.wsmo.org/ontologies/location.

A location ontology is also listed in the Imported
ontologies branch. Its identifier is the same as that of
the namespace, which means that the loc#address
concept is defined in the imported ontology
http://www.wsmo.org/ontologies/location.

Double-clicking on an attribute navigates to its default
type. Since the type of the physicalAddress attribute is
not available, the ontology that defines it must be
loaded. Axiom Editor uses an internal index to search

example CIJS'[OIT‘I&[I 4| »

HFP dcdate
NFP dc#coverage
NFP dcEcreator

—]-%% Mamespaces
X5 xsd
HEdlr
¥3 loc

-I- = Imported ontologies
da—gepviceDescription
&2 location

wi UsEdmetiators
A Defined axioms
—-{3 Concepts

-3 customer
(@ username
(@ password
@ contactInformation_
(@ accumulatedPoints
D Paguito

--(® contactinformation
(@ name
@ emailaddress
(@ faxnumber
@ telephonenumber
o scaiadress
@ paquitoContactinfo

.} Relations

Selected item properties

Attribute: physical&ddress
Types: loc#address
Inheritance status: new
Cardinality: 0 - *

Constraining: true

its repository of available ontologies. When it finds the definition of an ontology, the

following confirmation message appears.

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy « Page 19 of 44

y Load ontology “hitp:/fwww.wsmo.org fontologies location™
\..:/ from file "data‘ontologiesYocations, wsml™ 2

Cancel |

If the ontology is not found, an error message is displayed and the construction of the

axiom cannot continue in this direction:

Information

\i) Ontology "http: /fxmins. comfoaff0. 1" not found in repasitory.

After the user confirms, the location ontology is loaded and displayed in the Ontology
View. The concept address is automatically highlighted.

All elements from the location ontology can now be used for axiom construction. The
physicalAddress of the customerContact variable can now be refined by a

loc#address variable.

4.3 On-demand loading

The INFRAWEBS Axiom Editors has a built-in
mechanism for on-demand ontology loading.
This means the user does not necessarily
have to load all required ontologies in the
beginning. Instead, every required ontology
will be loaded later at the time it is needed
with the on-demand loading.

Let’s illustrate this with an example. Let's say
we have already opened the ontology
“hotelRoomBooking” in Ontology View:

If we try to create a variable with type, equal
to the concept “hotelRoomBooking”, the
following message appears:

Ontologies £2 = T O
location ImtelRoomEookinul LN
+ More information
-} Concepts

—-{3 bo#booking
=-{® haotelRoomBooking
i@ seller
i@ hasHotelStay
—-{B bo#bookingTicket
—-{® hotelRoomBookingTicket
i@ hasHokelstay
—-{B hotelstay
(@ stayld
i@ checkIn

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy « Page 20 of 44

i

v2# Question

L%

9P The concept vou have chosen may have additional attributes.

__-
They may be inherited from a super-concept defined in another ontaology
which is nok loaded.

Do wou want all additional inherited attributes ko be showvwn boo?

In this particular case this message is caused by the “bo#booking” super-concept of
the concept “hotelRoomBooking” because it is defined in another ontology (booking)
which is not loaded at the moment. The on-demand mechanism invokes and asks the

user whether he would like to load the “booking” ontology:

¥:3 Confirm

. Load ontology "http: /v, wsmo, orgfontologies)sfsfbooking”
\._':’/ from File "datalontologiesibooking. wsml* 7

Zancel

Axiom Editor firstly tries to locate the ontology in its own ontology store. If it cannot
find the ontology there it asks the user for permission to search for it on the Internet:

> Confirm

y Search ontology "http: f fvaww wsmo, orgfontologies)'sFs/booking"
\.._':’/ on the Internet?

Zancel

If it cannot find it in Internet, then the following message appears:

&3 Information

& Cntology "htkp: vy wsmo. orgfontologies)sfs/booking wsml”
\1) was not Found on the Inkernet,

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy Page 21 of 44

If the ontology is successfully loaded, then all additional attributes that might be
inherited from the super-concepts will be loaded and added to the already present
attributes of the selected concept.

4.4 Menu for operations available at the axiom definition step

At the first phase the axiom model contains only grs
a “start” element. The menu for available

ye¥ nonamel X

operations allows the following: Q;rl]
» Adding a variable / instance / relation / | [¢ Undosets
operator to the model. v
= Undo/Redo operations. (@) Add » verisble R
])) Add an instance
= Manual connecting elements with the @ Add a relation
“Connect to...” command. . Add operator OR
= Changing the Z-order of the elements in [®. Add operator AND
the diagram in order to avoid overlapping [#. Add operator NOT
of important information. AP Correct to...
Bring ta Front
. . Send to back
4.5 Two modes for axiom construction

The main concern of the INFRAWEBS Axiom
Editor is to guarantee the semantic consistence of the constructed logical
expressions since the users of this tool are assumed to be non-specialists in the first-
order logic. Such a consistence is achieved by a semantically-aware construction
process, in each step of which the user is allowed to perform only such operations
that are consistent with the already constructed part of the axiom.

Two modes for axiom construction are available:

- Standard mode involves only extending an existing part of the axiom by
selecting semantically compatible elements from context-sensitive menus.
This method is construction-driven and is suitable for novice users.

- Advanced mode allows adding isolated elements to the modeling area, which
can be later combined in various semantically correct ways. This allows
advanced users to be more efficient.

The disconnected elements in the axiom model, the ability to reconnect elements and
to use the “Connect to...” operation belong to the Advanced mode. In the current
version of the INFRAWEBS Axiom Editor it is possible to work with the advanced
mode operations at all times.

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy « Page 22 of 44

4.6 The first variable

The axiom construction process begins by
selecting a concept from Ontology Store. This

example Ccustomer]

concept is used to create the first variable in the
axiom model. The variable’s type is equal to the
selected concept. Automatically, just after
adding the first variable to the model, it is
connected to the Axiom root element “Start”.

From this moment on, the construction process
continues by performing semantically-correct
operations on different elements in the axiom
model which can be: variables, variable
attributes, instances, connections, operators,
relations and relation parameters.

After the ontology “customer” has been loaded,
the user selects a concept (in this case — the
concept “customer”) from the Ontology Tree.
Details about the concept are displayed in the
Ontology Properties section below.

The user can double-click the concept or drag-
and-drop it to the Diagram Area. Thus a
variable is created in the diagram which is of
type customer. The start element is
automatically connected to the variable making
it the root of the expression. The Text View now
contains a declaration of a customer variable.

The difference between double-clicking and
drag-and-dropping is that with drag-and-
dropping the user can specify the exact location
of the new element in the diagram immediately.
Of course, at any point in time the location of

NFP dcEdate
NEP dc#coverage
MFp doEcreator

—|-%§ Mamespaces
5 xsd
x5 dc
8 loc

= sa Imported ontologies
&% serviceDescription
ds |ocation

& Used mediators
Defined axioms
—-{2 Concepts

)
(@ username
(@ password
(@ contactinformation_
(@ accumulatedPoints
0 Paguito

—-{® contactinformation
(3 name
(@ emailaddress
@ faxnumber
@ telephonenumber
(@ physicalAddress
) paguitoContactinfo

)} Relations

Selected item properties

Concept: customer
Attributes: 4

NFPs:
dc#password = "The pasword of the
customer™
dc#description = "A SFS customer™
dc#accumulatedPaoints = "The points

elements in the diagram can be changed at the will of the user.

The concept’s attributes are visible in the Diagram Area. They can be selected and

refined. Here is how the axiom model would look like at this moment:

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy Page 23 of 44

Q";‘.;Axiom - [D:/IW fworkspace /AxiomEditor_rcpffoo_245.axiom] 2 B || E2 Properties &2 =0

B 3o =
Property | Value |
Type customer Fcus tomer
Variable customer
£ customer € customer#customer
Attributes:
(@ username : Pusername
assword @ ?password T
ontactInformation_ : ?Pcontactinformation_
@ accumulatedPoints : ?accumulatedPoints
" . 5= outline &2 =8
= (start)
(Z) customer

Axiom Text View 52 =8

axiom autoGenerated Axiom_3
nonFunctionalProperties
dc:description hasValue “Auto-generated axiom by Axiom Editor

endMonFunctionalProperties
definedBy
?customer memberOf customer #customer.

4.7 Refining attributes by selection

The most common task during the building of an axiom is the refinement of attribute
values.

{5 nonamel X =5

& customer € customer#customer|
Attributes:

(71 uEerrame [string]

passwword [string)
(71 contactinformation [customerCon

(7 accumulstedPaints [integer]

@ Refine by a defadlk type variable
@ Refine by a custom bype variable, ..
) Refine by a complex type instance. ..

(D Invaolve in relation
EF Connect ko,

=1 Locate in Ontology
%% Locate bype in Ontaology

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy « Page 24 of 44

The user must select an attribute from a variable and press the right mouse button to
invoke the context menu. The context menu gives access to all operations which can
be applied to the selected axiom element as well as some global operations. For
attributes, it contains the global Undo/Redo operations, the common Connect-to
operation, a set of specific refinement operations, and a couple of ontology
navigation operations. All of them will be discussed later.

The INFRAWEBS Axiom Editor maintains a stack of all »

operations since the beginning of the creation process (or ;m
the moment the axiom was loaded). Operations can be |t

undone by selecting the Undo operation from the context

menu or from the toolbar at the top. The keyboard shortcut | @ Involve in relation

for this operation is Ctrl-Z.
Rename...

If the user selected Undo at this moment, the customer i
variable would be deleted. The variable could be restored 3 Delste

by selecting Redo in a similar way. % Locate in Ontol
ocate in Onkology

The goal is however to refine the value of the Bring ta frant
contactInformation attribute. A set of refinement options is end Fo back
available. The “Refine by a custom type variable...”

allows the user to select the type for a new variable which will be the value of the
attribute. A dialog appears, containing a subset of the ontology view. It allows the
user to select only concepts. What's more, it only shows these concepts, which are
compatible by type with the type of the attribute. This includes concepts that are sub-
concepts of the concept defined as a default type of the attribute.

(7] €

Attribukes:
uzername [tring]
passyword [string]

| (7 contactinformstion [n:ustn:umerCnnfnr'ﬂnfnrmnfinnl-ll
accumulatedPoints [integer] {T: Undo Delete

-
o

IE:I Refine by a default type variable

& Refine by a custom bype variable,

) Refine by a complex kype instance. ..

D Invaolve in relation
HJ}' Conneck ka.,.,

=12 Locate in Onkology
=fa Locake type in Onkology

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy Page 25 of 44

In out example, there is only one concept compatible with the attribute’s type and it is
the contactinformation concept from the same ontology. Its attributes are displayed
only for convenience. They cannot be selected as refining elements.

{53 Please, select a type for the variable. The type is always a concept. |;|@@

ustomer ;

- Concepts
= G customeriContackInformation
@ hasMame
@ hasEmailaddress
@ hasFaxMumber
@ hasTelephoneMumber
@ hasPhysicaladdress

Selected item properties

o4 | Zancel |

After the user has selected this concept and pressed the Ok button the result is as
follows:

fj nonamel X = 0= Fraperties i3 =08
— *, =
B 5
Property | \alue A
Cardinality 0 - *
Constrainir False
Exists false
& customer € customerfcustomer| }
" Inheritance new
Attributes:)
. Mame contactInformatior
username [string]
il Types customner #cuskam,
o pEssOn [string] = = % Variable contactInformatior
| & contactinformation (') = 2contactinformatior
accumulatedPaoints [integer]

< 4

- EE Outline 7 =0
& contactinformation®€ customer#customerContactinformation
Aktribukes: = (start)
hashame [string] =I-(7) customer .
hasEmail&ddress [string] (%) contactInformation
hasFaxMumber [string]
hasTelephoneMumbet [string]
hasPhysicaldddress [address]

Axiom Text View 23 O =0

namespace § _"http: /v, infrawebs. orgfaxioma" A

'
dc _"http:ffpurl.orgfdc/elements 1. 14",
customer _"hkp:f fw wsmo, orgfontologies)'sfsfrustomer #"

webZervice dummyiwebService

importsOntalogy

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy « Page 26 of 44

A new variable of type contactinformation is added to all views — the Diagram Area,
the Outline View, the Thumbnail and the Text View. The attribute is connected to the
new variable showing the refinement dependency between them. The name of the

new variable is the same as the name of the associated attribute extended by sign
H?H.

4.8 Refining attributes by default

There are two more ways to achieve the same effect. The first is to select option
“Refine by a variable with default type...” from the context menu:

fﬁ nonamel X —

€ customerfcustome

& customer

Attributes:
username [string]
passvord [string]

(@ contactinformation (= ZFeantactinformationl
accumulatedPaints [inted <5 Unda Delete

I
=4

&) Refine by a defaulk bype variable
»

@ Refine by a custom bype wariable. ..
) Refine by a complex bvpe instance. ..

D Involve in relation
HF Conneck ka...

%= Locate in Ontology
+fs Locate byvpe in Onkalogy

The selection dialog would have been skipped and a variable having attribute’s
default type would have been added and connected to the axiom model. This
approach is quicker but the user wouldn’t be able to select a sub-concept.

4.9 Refining attributes by manual connection

This approach involves advanced editing. The user might want to examine the
attribute’s type more closely before selecting an appropriate concept.

INFRAWEBS « 511723 «Axiom Editor User’s Guide * Version X, dated dd/mm/yyy « Page 27 of 44

The navigation from an element to its type is done by selecting “Locate type in
Ontology” option from the context menu.

& customer

€ customerfcustome

Atkributes:
username [=tring]
password [=tring]

@ contactinformation (!

accumulatedPaints [intec

PR

= A

<, Undo Delete
g
@ Refine by a default byvpe variable

(7) Refine by a custom bype variable, ..
D Refine by a complex type instance...

@ Involve in relation
EJ“ Connedck k...

<1 Locake in Ontology

+ Locate bype in Onkology

The contactinformation concept is highlighted in the
Ontology Tree. The user can then select a nearby sub-
concept or instance which will also be compatible.

Similarly, the “Locate in Ontology” operation would
highlight the attribute itself rather than its type.

Double-clicking on the concept adds a new variable of
type contactinformation to the Diagram Area which is
not connected to any part of the axiom. It is not
included in the Outline View and is not declared in the
Text View.

This time, the connection must be established
manually. The wuser has to right-click on the
contactinformation attribute and to select “Connect
to...” from the context menu.

The first end of the connection is attached to the
attribute while the second end is left free. The user has
to point at a compatible variable or instance from the
Diagram Area which is not yet connected to the axiom.
Once again, the target element must be compatible
with the type of the attribute.

#h Ontologies X

5§ =0

example customer l

D

NEp dc#date

NFP dc#Fcoverage

NFP dcEcreator
-]-% Namespaces

N5 x=d

5 dc

¥ loc
- &% Imported ontologies

& serviceDescription

& location
48 Used mediators
& Defined axioms
=3 Concepts
= @ customer
(@ username
(@ password
(@ contactinformation_
@ accumulatedPoints
0 Paquito
.0
@ name
@ emailaddress
@ faxnumber
@ telephonenumber
(@ physicalAddress
O paguitoContactInfo
W) Relations

Selected item properties

Ead

Concept: contactInformation
Attributes: 5

MNFPs:

dc#faxnumber = "The fax number of
the customer”

dc#telephonenumber = "The phone
number of the customer™

INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 28 of 44

& customer

€ customertcustomer

Attribukes:
uzername [string]
password [string]

cortactinformation [customerContactinfarmationll

accumulatedPoints [integer]

< Undo Set Yariable Property

%
@ Refine by a default bvpe variable
@ Refine by a custom bype variable, ..

) Refine by a complex bype instance. ..,

{ Involve in relation

=% Locate in Onkology
=1z Locate bvpe in Ontology

The mouse cursor changes its shape to indicate which elements are compatible and
which are not. Once the target has been selected the connection looks the same as

in the previous example.

@ customer

fﬁAxiom - [D:fTW fworkspace (AxiomEditor_rcp/foo_245.axiom] X

€ customerdcustomer

Attributes:
(@ Username :
(@ password :

?username
?password

L@ contactinformation_ :

Pcontactinformation.A|

(@ accumulatedPoints

?accumulatedrrits |

0 ntactinformation_%' customer#contactinformation

Attributes:
@name :
(@ emailaddress : ?emaiaddress

(@ faxnumber : ?faxnumber

(@ telephonenumber : ?telephonenumber
(@ physicalAddress : ?physicalAddress

name

INFRAWEBS « 511723 » Axiom Editor User’s Guide * Version X, dated dd/mm/yyy * Page 29 of 44

4.10 Multiple value attributes

The Cardinality property of an attribute shows the number of different values that
can be assigned to this attribute. An attribute having a maximum cardinality
greater than one is called a “multiple value attribute”. For example, the code
attribute of the variable station has a maximum cardinality of 3.

=T =
Property YWalue s
Constraining krue
& station® trainConnection#station Exists False
. Atkributes: Inheritance new
code [=tring)] Mame code
locatedin [address] W Tvpes ¥MLSchemna# st
bhorder TaCaurtry [bhorder] Yariable
w
£ >

Let's say that we have already refined this attribute with the value instance
123456. Now we would like to assign additional value to this attribute. This is done
with the operation “Additional Attribute Value” from the context menu:

@ station’® trainConnection#station
Attribukes:
i@ code (3) = Tcode
locatedin [address] <:f,‘ Unda
barder TaCourtry [bard: r2“1'>

4 Additional attribute Yalue

I XMLSchemat#string

123456

=l

=f= Locate in Ontology

=f= Locate type in Onkology

This operation is only available if the following requirements are met:

¢ the attribute is a multi value attribute
INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 30 of 44

e the attribute is already refined
e the maximum cardinality for this attribute has not yet been reached

After executing this operation we have additional copy of the attribute which can
be refined in all possible ways just like the first attribute:

@ station® trainConnection#station

Attribukes:
i@ code (3) = 2code

I code [string] I

locatedin [addresz] gy

harder ToCourtry [barder]

1" XMLSchema#string
123456

The number in brackets (3) shows the maximum cardinality of the attribute and it
only appears in multi value attributes. Here is an example, showing how we could
assign 3 different values to the multiple value attribute code.

fﬁ nonamel X = 0= Properties &7 =08
B EY
Property | Value | -~
Cardinality 0-3
L S . . I XMLSchema#string onsfrsining| e
@ station’® trainConnection#station 123456 Exists False
Attributes: Inheritance new
@code (3) =Tcode ji Marme code
@ code (3) = Tcode1 Types AMLSchema#string
(@ code (3) = 7code2 ' XML Schematstri ng Wariable codeZ
Iocatedin [address] 22222227222
border ToCountry [karder]
I’ XML Schema#string
3333333333
wv

4.11 Use of relations

Another way to refine a variable is to involve it in relation. For instance, we can
refine the “username” attribute by involving it in a “stringEqual” relation. This is
done by selecting the “Involve in relation” option:

INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 31 of 44

& customer %€ customer#customer

Aktribukes:
contactinformation [customerContactinformation]
username [string] i
passward [string) ‘S-'f Unda
accumulatedPoints [integer] ‘t_:;}

) Refine by a default bype value instance
)} Refine by a custom bype value instance. ..

) Refine by a complex: type instance. .,

R Involve in relation

HJZ Connect k...

== Locate in Onkology

<1 Locake bype in Onkology

A relation selection dialog appears. The user must select the concrete parameter
of the chosen relation to which the selected attribute should correspond:

¥ Please, select a compatible relation parameter.

wsml-syntax l

-1} Relations
=i} wsmlstringEqual
;~
P skringEqualz
=1 wsml#stringInequal
P stringlnequall
P stringlnequal2

Selected itemn properties
Relation parameter: stringEquall A

The new relation appears in the model. Please note the small box ﬂ in the
middle of the connection between the argument of the variable and the parameter
of the relation. This is actually a value instance of type _string.

INFRAWEBS « 511723 » Axiom Editor User’s Guide * Version X, dated dd/mm/yyy * Page 32 of 44

& customer
attribukes:

contactinformation [customerContactinformation]

@ username (‘) = username
password [string]

accumulatedPoints [integer]

| Lt

Parameters:
p stringEqualt = ?usernamT

stringEcual2 [string]

The parameters of a relation can be refined in the very same way as in the case of

refining attributes of variables. Here is how the second parameter can be refined
by a default type value instance:

| R

Parameters:
p stringEqual1 = Tusername-
L}

| 0 string™ == "
- <7 Undo

[
i

1 Refine by a defaulk bype value instance
) Refine by a custom bype value instance. ..
) Refine by a complex bype instance. .,

D Involve in relation
HF Connect ko,

== Locate in Ontology

=% Locate tvpe in Ontology '

The manipulation of relations and their parameters is analogous to the
manipulation of variables and their attributes respectively. Relation parameters
also have types and assigned variable names. They can be refined in the same
ways as attributes and the same consistency checks apply for them. The only

difference between variables and relations is that a relation has no variable name
and cannot refine an attribute by itself.

INFRAWEBS « 511723 » Axiom Editor User’s Guide * Version X, dated dd/mm/yyy * Page 33 of 44

4.12 Use of logical operators

The current version of the INFRAWEBS Axiom Editor allows using the following
logical operators: OR, AND, NOT
and EXISTS. The EXISTS operator
is performed by setting the “Exists” =

Boolean flag of a variable, which :semame

1assword

was described earlier. In this L, . rcontactnformstonf— | <7 Undo
section we will describe the use of it : racamulatedpoints ©y
OR, AND and NOT operators. te
- -
Operators can be inserted in the o ———

@ contactlnformat
Attributes:
(@ name : name

(@ emailaddress : Yemailaddress
(@ faxnumber : ?faxnumber

A S e U

middle of existing connection to
branch the expression logically.

¥ Delete

Firstly, a connection must be
selected. Secondly, the appropriate
type of the operator must be
selected form the context menu:

If it is an infix operator such as AND or OR, then a new variable or instance must
be selected as its second operand.

If the operator used for refining a variable, then the following operations are
available:

€ customerfcustome

& customer
Attributes:
username [string]
password [string)

@ contactinformation (*} = ?contactinformatior
accumulatedPoirts [integer]

"él"—': < Undo Delate

[
=

e T T T Lo ar] (2) Add a default type vatiable operand

Attributes:
hasMame [string]
hasEmail&ddrezs [string)
hasFaxMumber [string]
hasTelephoneMumber [string]
hazPhysicaldddress [address]

(7} Add a custom type variable operand. ..
) add a complex: type instance operand. ..

ﬂ]‘ Connect ka..,.
¥ Delete

Bring bao Fronk
Send ko back

If the operator is not connected to a variable it is also possible to connect it to a
relation, like this:

INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 34 of 44

[
L5

<2 Unda

@ &dd a custom type wariable operand, ..

& contactinformatiomformation
Attributes:
hashame [string]
hasEmaildddress [string]
hasFaxMumber [string]
hasTelephoneMumber [string]
hasPhysicaldddress [address]

‘R add a relation operand

ﬂ]z Conneck ta..,
¥ Delete

Bring ko fronk

Send to back

4.13 Renaming Variables

¥ 2dd a complex bype instance operand. ..

Variable names are automatically generated by the INFRAWEBS Axiom Editor
and their uniqueness is observed during the whole construction process.
However, advanced users might want to use their own, mnemonic variable
names. The INFRAWEBS Axiom Editor allows this through the editable property
called “Variable” in the Properties View. For convenience, a single click on a
selected variable also opens a small editing area over the name of the variable
displayed in the diagram. This is called “direct editing” as we know it from the

Windows, Excel etc.

f;;:_-‘iAxiom - [D:/IW fworkspace fAxiomEditor_rcp/foo_245.axiom] X

& customer € customer#fcustomer
- Attributes:
(@ username :
(@ password : ?password
(@ contactInformation_ @ ?contactInformation
@ accumulatedPoints @ PaccumulatedPoints

fusername

I customer#contactinformation

paquitoContactinfo

. i
| customerContact]
Atirbutes:

(@ name : ?name
o] @ emailaddress :

(@ faxnumber : faxnumber

(@ telephonenumber : ?telephonenumber

(@ physicalAddress : ?physicalAddress

?emailaddress

| § cstumenficunta ctinformation I

A single click on a selected variable enters direct edit mode.

ElProperties &3 =0
E R v

Property | Value |

Type customer #contac. ..

Variable contactinformati. ..
[T =
o= Outline £3 8
= (start)

E @ customer
=t oR

{7) contactinformatio
O paguiteContactint

INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 35 of 44

After the variable is renamed from contactinformation to customerContact its new
value is reflected everywhere in the workspace — all variables, instances and
attributes from the Diagram Area bound to this variable name, the Properties
View, the Outline View, and the Text View (which is not displayed here).

ey

Variable customerContact,

& customer € customerfcustomer
Attributes:
@username 1 Pusername

(@ password @ ?password
i@ contactInformation_ PcustomerContaclie
(@ accumulatedPoints ?accurnulateu:ll—'ointsl

4.14 Operations for editing connections

The advanced mode provides operations for editing connections. These
operations include:

e reconnection of the source of an existing connection
e reconnection of the target of an existing connection

These operations are performed by drag-and-drop of the end-points of an existing
connection.

4.15 Manipulating large axiom models

When the diagram grows large it becomes difficult to perceive its high-level
structure and to navigate between the different parts. The Outline View and the
Thumbnail can help in this situation. However it is often better to zoom out the
diagram and take a more distant look at it.

INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 36 of 44

I customerffcontactinformation B Outine 2 —a
paquitoContactinfo = (start)
] @ customer
h - OR
(%) customerContact
@name : 7name O patotoeontatint
@ emailaddress : ?emailaddress .
@ faxnumber : Ffaxnumber
(@ telephonenumber @ ?telephonenumber
(@ physicaladdress : ?physicaladdress
4 E
[

o Axiom - [D:/TW fworkspace AxiomEditor_rcp/foo_245.axiom] X 8 || Elproperties &2 =0
EFE ¥

Froperty | Value |
Type customac#oontac, .,

.‘i;kwiom - [D:/TW fworkspace {AxiomEditor_rep/foo_245.axiom] X

O || E Properties &3 =0

- — #
E & 7
- Property | Value |
R example#ageOfHuman -
Constrai... true
Parameters:
e S MName 1_Human
LJ' l_rluman — iz & 2 Types example#Human
P 2integer : ?2 integer .— =t Variable 1_Human
iy
& customer € customerfcustomer
Attributes:
(@ username : fusername
(@ password : ?password
(@ contactinformation_ : ?customerContac
@ accumulatedPoints @ ?accumulatedPoints
[T =
o= Outline &2]
=]‘_‘!!, AND ”~
= @ customer
. customer#contactinfor 31 OR
@ cutumeri:umact € customer#contactinformation pagquitoContactlnfo (@) customerc
Attributes:
(@ n:al:es' name O pagitoCol
B i —-{D example #age0fH
@ emailaddress : Yemailaddress T (@) 1_Human
(@ faxnumber : ?faxnumber = @ hasBirthpls
(@ telephonenumber : ?telephonenumber @ longitu—
(@ physicalAddress : ?physicalAddress @ |atitud W
3 ol
4

Axiom Text View &2

axiom autoGeneratedAxiom_93
nonFunctionalProperties
dc:description hasValue "Auto-generated axiom by Axiom Editor™
endionFunctionalProperties
definedBy
(?customer memberOf customer #customer
[contactinformation_ hasvalue ?customerContact
]and
((
)

?customerContact memberOf customer #contactinformation

Zooming is done by means of the zoom controls located at the top of the

workspace.

File Edit Window Help

EH ¥ =] [u] o
EEAEr-E R S0 oo o
&5 Ontologies &3

wsml-syntax example lcustomel 1/ »

i@ hasBirthdate -
@ hasOhit
_Tjg'. hasBirthplace
@ isMarriedTo
_Tjg'. hasCitizenship
—*_ . .
i@ isAlive

ﬂ Mary

b ot | & & -

& ¢ = 0| N~ -

€ customerfcustomer

& customer
Attrikiitaas

INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 37 of 44

Selecting zoom factor of 50% and realigning the views would have a similar effect

on the workspace:

@ | 50%

=

f;_‘iAxlom - [D:TW fworkspace fAxiomEditor_rcpffoo_245.axiom] X 8 || E& Properties 532 =0
— %
B 5 -~
Property | Value |
Constrai... true
Mame 1_Human
Types example #Human
Variable 1_Human
B susiome Conac® custmersrontctinormatisl
O T =
o= Outline £3 B
Axiom Text View &3 = 0| E (start)
defineds = It Ao
efinedBy 43 =
{ ?Pcustomer memberOf customer #customer e @ CIZEE
[contactInformation_hasvalue ?customerContact = h’- OR
]and (@) customerCont
{ { ?customerContact memberOf customer #contactInformation & paquitoContac
g"_ —1-{f example#ageOfHuma
{ ?customerContact = paguitoContactInfo = @ 1_Human
)] —-(%) hasBirthplace
) {7 longitude
d (%) latitude
an .
{ example#ageOfHuman(?1_Human, ?2_integer) and (@ 2 integer
?1_Human memberOf example #Child
[hasBirthplace hasvalue ?hasBirthplace < i s
1 and = —
{ ?hasBirthplace memberOf location #ocation
[longitude hasvalue ?longitude,
latitude hasValue ?latitude
1 and
{ ?longitude memberOf XMLSchema#float L3
) and
{ Flatitude memberOf ¥MLSchema #float
)] -

4.16 Hiding unused attributes

When we add variables to the axiom they are displayed with all available
attributes. Since their number may be quite large, the area occupied by a single
variable will also be large. In this example we have only 3 variables which occupy

almost half of the model area:

@ trainTrip®€ trainConnection#trainTrip

Attributes:
“@ start {*) = ?start1
“@end (') = 2end

via [station]

seat [string]

train [=tring]

class [string]

departure [dateAndTime]
arrival [datendTime]
duration [interval]
distance [distance]

start1®€ trainConnection#station

Attribubes:
@ code (3) = 7code
locatedin [address]

border ToCountry [border]

& end€ trainConnection#station

I XMLSchemat#string
1111

artribukes:

@ code (3) = 7code1
locatedin [address]
border ToCountry [border]

I XMLSchema#string

INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 38 of 44

Since we do not want to refine any other attributes of these variables, it would be
convenient if we could minimize the area they occupy. There is a convenient
operation for such cases called “Hide Unused Attributes”. It is applied on
variables, like this:

@ start1€ trainConnection#station

Aftributes:
. @ code (3) = 7coile
Attributes; ——— &~ Undo Locztecil_néadclﬂ_rrtessi 4
0@ start {*) = ?start1 r\\1|> orderToCountry [barder]

“@end (*) = Tend

wia [statian] @ Involve in relation

zeat [string]

train [=tring] e e

clazs [2tring] ﬂﬁ' trainConnectionfstation

departure [datesndTime] | 3 Delete B

artival [datesndTime] (3} = 7codel

duration [interyal] +% Locate in Ontalogy AN [address] I XMLSchema#string
diztance [distance] ToZountry [barder]

. = Hide Unused Attributes

Bring ko Front
Send ko back.

Here is the result of this command applied to all variables of the axiom:

@ start1€ trainConnection#station
Attributes:
@coie (3) = ?code

@ trainTrip®€ trainConnection#trainTrip
Attributes:
“@ start (*) = ?start1
“@end (*) = Tend

I XMLSchematstring

@ end® trainConnection#station 1111

Attributes:
i@ code (3) = Zcode

I XMLSchematstring
2222

INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 39 of 44

4.17 Saving and Loading axioms

The user can select Save from the main menu and store the working progress or
the complete axiom in a proprietary binary format. The file extension is “.axiom”.
The saved axiom can later be opened by the Open command.

=8 Edit Window Help

¥ New Axiom Cirl+N

(& Open Cirl+0 w8 |4 Axiom - [D:/Th
Close Ctrl+74 =
Close Al Ctrl+Shift+F4 -t'rr1 ot |v])
E
&,
(=) save Al Ctrl+5hift+5

Exit

P i@ hasWeightInkG
i@ hasBirthdate
i@ hasObit
(& hasBirthplace

4.18 Saving and Loading axioms as wsml files

It is possible to store the constructed axiom as a wsml file by clicking on store
(“discket”) icon located at the right of the Axiom Text View header. Such a file
contains only text of the axiom written in WSML language. The stored text may be
edited by all text editors or loaded again by the INFRAWEBS Axiom Editor.

The current version of the INFRAWEBS Axiom Editor allows automatically
restoring a graphical model of an axiom from its textual wsml representation.
However, since any graphical information has not been stored, the restored
graphical model can significantly differ from the initial graphical design of the
axiom. Moreover, in some cases the original logical structure of the axiom can not
be restored.

Complete restoring both logical and graphical structure of axioms from their
textual (wsml) representation is under development and we hope that this problem
will be solved in the next version of the INFRAWEBS Axiom Editor.

INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 40 of 44

5 CONCLUSION AND FUTURE TRENDS

This User's Guide is intended to get the users acquainted with the general
operation of the INFRAWEBS Axiom Editor. A summary of the editing operations
can be found in Appendix A.

The INFRAWEBS Axiom Editor is implemented in J2SDK 1.4.2 runtime
environment and uses basic platform components, plug-in infrastructure, graphical
user interface components (menus, buttons, tree views, event handling) from
Eclipse RCP (Rich Client Platform). For development of visual designers the
Eclipse GEF (Graphical Environment Framework) is used. Access to WSMO-
based ontologies is accomplished via WSMO4J (WSMO API).

The current version (1.0.5) of Axiom Editor possesses many restrictions. There
are many axioms, which cannot be created solely with Axiom Editor. However, we
believe that this tool is a fairly flexible and can be easily learned and used even by
novice SWS users.

Main directions for future development of the Editor include:

e Transformation of the INFRAWEBS Axiom Editor to an integrated Service
Capability Editor by extending it with some customized modules of WSMO
Studio and integrating with more advanced realization of INFRAWEBS
Case-based Memory [Agre and Boyanov 2006].

e Extending application domain of the INFRAWEBS Axiom Editor by
expanding the range of logical operations used (e.g. including implies,
impliedBy, :- and ! operators). As a result the Editor could be used not only
for creating the SWS capabilities but for constructing axioms in WSML
ontologies as well.

e Developing a robust method for reconstruction of the graphical model of the
WSML-based axiom from its plain text representation.

REFERENCES

[Agre and Boyanov 2006] G. Agre and A. Boyanov. INFRAWEBS Deliverable
D5.4.2.2. Realization of Service Composition in Design Time: Self Organizing
Case Memory, February 2006.

[Bruijn et al. 2005] Bruijn, J.; Lausen, H.; Krummenacher, R.; Polleres, A.;
Predoiu, L.; Kifer, M.; Fensel, D.: D16.1 — The Web Services Modeling Language
(WSML). WSML Draft, October 2005.

[Roman et al.,, 2005] D. Roman, U. Keller, H. Lausen (eds.): Web Service
Modeling Ontology, WSMO Final Draft, version 1.2, 2005.

[Des Rivieres and Wiegand 2004] J. Des Rivieres and J. Wiegand. Eclipse: A
platform for integrating development tools. IBM Systems Journal, 43(2), 2004.

INFRAWEBS « 511723 « Axiom Editor User’s Guide ¢ Version X, dated dd/mm/yyy « Page 41 of 44

APPENDIX A. TABLE OF OPERATIONS

This table contains a summary of the most important semantically-correct
operations in Axiom Editor.

Operations for creating elements of Axiom Model

Create

avariable

This operation creates a new variable in the graphical axiom
modeling area (window). The type of the variable is selected by
the user from Ontology Store. The name of the variable is
automatically generated from the name of the selected concept.
This guarantees the uniqueness of variable names across the
axiom.

Create
an operator

The operation creates a new logical operator of a specified type
in the modeling area. The operator’'s type is selected from the
menu — it can be OR, AND or NOT.

a connection

Create The operation adds an instance to the graphical modeling area.

an instance The user is given the opportunity to select the instance from
Ontology Store.

Create The operation creates a new connection between two elements

placed on the modeling area. The user selects a source and a
target element for the new connection. The selection is restricted

a variable as
shared

advanced . .
Enode) only to semantically-compatible source and target elements.
Create The operation adds a relation to the modeling area. The user is
arelation given the opportunity to select an arbitrary relation from Ontology
Store.
Operations on Variables
Rename The user can change the automatically generated variable name
a variable as long as the uniqueness of names is not violated. The
Capability Editor takes care of changing the variable’s name
from the old one to the new at all its occurrences in the model.
Declare Each variable defined in the axiom model can be marked as

being a “Shared variable”. This means that such a variable may
be used in more than one axiom and it must represent one and
the same object in all these axioms.

Involve

a variable in a
relation

A variable that has been already placed at the axiom modeling
area may be further involved in a relation also presented at this
area. More exactly, such an operation creates a connection
linking the variable with a parameter of the relation. Operation is

Eﬁ\g&/:)nced possible only when the variable and the selected relation
parameter have compatible types.
Hide unused | Minimize graphical appearance of a variable by hiding all its

INFRAWEBS « 511723 « Axiom Editor User’s Guide « Version X, dated dd/mm/yyy « Page 42 of 44

attributes attributes that are not refined.
Delete a | Deletion of a variable leads to deletion of all incoming and
variable outgoing connections of the selected variable in the model, thus
keeping the axiom consistent.
Operations on attributes of a variable
Refine The operation creates a new variable at the modeling area and

an attribute by

links the selected attribute value to it with a connection. The
meaning of the operation is that the value of the attribute is

avariable equal to this new variable.
The name of the new variable is automatically set equal to the
name of the selected attribute value being refined.

Refine The operation adds to the current axiom a new instance

- selected from an ontology and links it to the attribute value to be

an attribute by)) o .

an instance refined by a connection. The user is given th_e opportunity to
select such an instance from a special dialog window containing
a subset of instances from the Ontology Store. More exactly, in
order to preserve the semantic consistence of the axiom, the
selection is limited only to those instances, whose concepts are
equal to or are sub-concepts of the concept specified as the
type of the chosen attribute.

Refine A value of an attribute of a variable from the current axiom may

- be further refined by specifying that it is involved in a relation

an attribute by , . ,

involving into deflne_d either in the Qntology S'_[ore or already placed at the

a relation modeling area. Selecting the attrlt_)ute to be refined restricts a
set of relations that may be applied to the value of such an
attribute — that are all relations, which have parameters with
types compatible with the type of that attribute.

Additional Allows to add an additional value for refining a multiple value

attribute value

attribute.

Operations on relations and relation parameters

Refine

a relation
parameter

A set of available operations on relation parameters is
practically the same as the operations working on values of
attribute variables (see “Operations on variable attributes”).

Delete relation

Deletion of a relation leads to deletion of all its incoming and
outgoing connections in the model, thus keeping the axiom
consistent.

Operations on operators

Change
operator type

This operation is used for changing the type of an operator
selected from the modeling area.

Delete
an operator

The use of this operation potentially leads to creating some
orphaned axiom model elements. In order to preserve the
semantic consistence of the axiom, such “orphaned elements”

INFRAWEBS « 511723 » Axiom Editor User’s Guide « Version X, dated dd/mm/yyy * Page 43 of 44

are not included in the axiom text generation.

Add This operation adds a new operand to a selected operator
A placed at the modeling area and links them by a connection.
n operand i .
The new operand can be either an existing model element from
the modeling area (variable, relation, instance, etc.) or a new
element that can be created by means of already described
operations, which the user may select from right-click sub-menu.
Operations on instances
Edit an | This operation can be performed on such instances of the axiom
instance of | model which have a WSML built-in data type or a subtype of
WSML built-in | such type. The value of these instances is entered by the user
data types and can be edited later.
Delete Deletion of an instance leads to deletion of that instance along
an instance with aI_I connections incoming to it from the model, thus keeping
the axiom consistent.
Operations on Connections
Insert We would like to remind that the main meaning of a connection

an alternative

in the axiom model is that the target element of the connection
is used as a refinement of its source element. It is natural to
allow the user to define an alternative (or several alternatives)
for such a refinement. In order to insure that such an operation
will be meaningful, it is necessary to restrict its application
domain.

Insert an AND

This operation aims at allowing the user to specify explicitly

operator logical conjunction of two axiom model elements and is also
used during the “Logical development” phase of the axiom
model construction process operator as its second operand.
Insert a NOT | This operation inserts a NOT operator in the middle of any
operator connection.

Reconnect a
sourcel/target
element
(Advanced
mode)

This operation moves the starting/ending point of the connection
to another element in the Axiom Model. In order to preserve the
semantic consistence of the axiom, the operation can be
performed only if the new source/target element is semantically-
compatible with the type of the edited connection.

INFRAWEBS « 511723 « Axiom Editor User’s Guide ¢ Version X, dated dd/mm/yyy « Page 44 of 44

